論文の概要: AdvDO: Realistic Adversarial Attacks for Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2209.08744v1
- Date: Mon, 19 Sep 2022 03:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 17:08:04.019601
- Title: AdvDO: Realistic Adversarial Attacks for Trajectory Prediction
- Title(参考訳): AdvDO: 軌道予測のための現実的な敵攻撃
- Authors: Yulong Cao, Chaowei Xiao, Anima Anandkumar, Danfei Xu, Marco Pavone
- Abstract要約: 軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
- 参考スコア(独自算出の注目度): 87.96767885419423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is essential for autonomous vehicles (AVs) to plan
correct and safe driving behaviors. While many prior works aim to achieve
higher prediction accuracy, few study the adversarial robustness of their
methods. To bridge this gap, we propose to study the adversarial robustness of
data-driven trajectory prediction systems. We devise an optimization-based
adversarial attack framework that leverages a carefully-designed differentiable
dynamic model to generate realistic adversarial trajectories. Empirically, we
benchmark the adversarial robustness of state-of-the-art prediction models and
show that our attack increases the prediction error for both general metrics
and planning-aware metrics by more than 50% and 37%. We also show that our
attack can lead an AV to drive off road or collide into other vehicles in
simulation. Finally, we demonstrate how to mitigate the adversarial attacks
using an adversarial training scheme.
- Abstract(参考訳): 軌道予測は、自動運転車(AV)が正しく安全な運転行動を計画するために不可欠である。
多くの先行研究は高い予測精度を達成することを目標としているが、その方法の逆ロバスト性の研究はほとんどない。
このギャップを埋めるため,データ駆動軌道予測システムの逆ロバスト性について検討する。
我々は、慎重に設計された微分可能な動的モデルを利用して、現実的な対向軌道を生成する最適化ベースの対向攻撃フレームワークを考案する。
実験により,最先端予測モデルの対角的堅牢性をベンチマークし,一般指標と計画対応指標の両方の予測誤差を50%以上,37%以上増加させることを示す。
また、当社の攻撃によってAVが道路を走行したり、他の車両に衝突したりできることも示しています。
最後に,敵の訓練方式を用いて,敵の攻撃を緩和する方法を示す。
関連論文リスト
- Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
本稿では,AWTAの損失を最先端のモーション予測モデルと統合して性能を向上させる方法を示す。
我々の手法は、WTAを用いて訓練された任意の軌道予測モデルに容易に組み込むことができる。
論文 参考訳(メタデータ) (2024-09-17T13:26:17Z) - A First Physical-World Trajectory Prediction Attack via LiDAR-induced Deceptions in Autonomous Driving [23.08193005790747]
既存の攻撃は、被害者AVの予測モデルを損なう。
単点攻撃を実現するための新たな2段階攻撃フレームワークを提案する。
我々の攻撃は、最大63%の衝突率と、被害者AVの様々な有害反応を引き起こす。
論文 参考訳(メタデータ) (2024-06-17T16:26:00Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
本稿では,軌道予測モデルに対する新たな逆バックドア攻撃を提案する。
我々の攻撃は、自然主義的、従って、新しい2段階のアプローチで作られた毒のサンプルを盗むことによって、訓練時に被害者に影響を及ぼす。
提案手法は,予測モデルの性能を著しく損なうおそれがあり,攻撃効果が高いことを示す。
論文 参考訳(メタデータ) (2023-06-27T19:15:06Z) - Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic
Adversarial Training [13.998123723601651]
機械学習に基づく予測モデルは、Intelligent Transportation Systems(ITS)において、トラフィックパターンを予測するために一般的に使用されている。
既存のモデルのほとんどは敵攻撃の影響を受けやすいため、不正確な予測や、混雑や遅延などの負の結果につながる可能性がある。
交通予測タスクに敵対的トレーニングを組み込むための枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-25T04:53:29Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転システムにおいて不可欠な要素である。
これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究では,敵対的攻撃に対する軌道予測モデルを保護するための2つの重要な要素を同定する。
論文 参考訳(メタデータ) (2022-07-29T22:35:05Z) - Semi-supervised Semantics-guided Adversarial Training for Trajectory
Prediction [15.707419899141698]
軌道予測に対する敵対的な攻撃は、将来の軌道予測を誤解させ、安全でない計画を引き起こす可能性がある。
本稿では,軌道予測のための新しい逆学習法を提案する。
本手法は、敵攻撃の影響を最大73%軽減し、他の一般的な防御方法より優れる。
論文 参考訳(メタデータ) (2022-05-27T20:50:36Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - On Adversarial Robustness of Trajectory Prediction for Autonomous
Vehicles [21.56253104577053]
軌道予測は、安全な計画とナビゲーションを行う自動運転車にとって重要な要素である。
本稿では,予測誤差を最大化するために,通常の車両軌道を乱す新たな対向攻撃を提案する。
ケーススタディでは、敵が敵の軌道に沿って目標のAVに近い車両を運転した場合、AVは不正確な予測を行い、安全でない運転決定を行う可能性がある。
論文 参考訳(メタデータ) (2022-01-13T16:33:04Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。