論文の概要: SS-SFDA : Self-Supervised Source-Free Domain Adaptation for Road
Segmentation in Hazardous Environments
- arxiv url: http://arxiv.org/abs/2012.08939v2
- Date: Thu, 25 Mar 2021 09:33:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 02:31:00.626140
- Title: SS-SFDA : Self-Supervised Source-Free Domain Adaptation for Road
Segmentation in Hazardous Environments
- Title(参考訳): SS-SFDA : 危険環境における道路分割のための自己監督型ソースフリードメイン適応
- Authors: Divya Kothandaraman, Rohan Chandra, Dinesh Manocha
- Abstract要約: 本研究では,雨や霧などの悪天候条件下での道路の非監督的区画化に対する新しいアプローチを提案する。
これには、自己教師付き学習を用いたソースフリードメイン適応(SFDA)のための新しいアルゴリズムが含まれている。
実際の悪天候条件と合成悪天候条件に対応するデータセットを6ドルで評価した。
- 参考スコア(独自算出の注目度): 54.22535063244038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach for unsupervised road segmentation in adverse
weather conditions such as rain or fog. This includes a new algorithm for
source-free domain adaptation (SFDA) using self-supervised learning. Moreover,
our approach uses several techniques to address various challenges in SFDA and
improve performance, including online generation of pseudo-labels and
self-attention as well as use of curriculum learning, entropy minimization and
model distillation. We have evaluated the performance on $6$ datasets
corresponding to real and synthetic adverse weather conditions. Our method
outperforms all prior works on unsupervised road segmentation and SFDA by at
least 10.26%, and improves the training time by 18-180x. Moreover, our
self-supervised algorithm exhibits similar accuracy performance in terms of
mIOU score as compared to prior supervised methods.
- Abstract(参考訳): 本研究では,雨や霧などの悪天候条件下での道路の非監督的区画化に対する新しいアプローチを提案する。
これには、自己教師付き学習を用いたソースフリードメイン適応(SFDA)のための新しいアルゴリズムが含まれている。
さらに,本手法は,SFDAにおける様々な課題に対処し,オンラインの擬似ラベル生成や自己注意,カリキュラム学習,エントロピー最小化,モデル蒸留など,パフォーマンスの向上に活用されている。
実際の悪天候条件と合成悪天候条件に対応するデータセットを6ドルで評価した。
本手法は,教師なし道路セグメンテーションとsfdaの先行研究の少なくとも10.26%を上回り,トレーニング時間を18~180倍向上させる。
さらに, 自己教師付きアルゴリズムは, 従来の教師付き手法と比較して, mIOUスコアと同等の精度を示す。
関連論文リスト
- Unsupervised Domain Adaptation Via Data Pruning [0.0]
非教師なし領域適応(UDA)の観点から問題を考える。
本稿では,UDAのトレーニング例を取り除き,トレーニング分布を対象データと整合させる手法であるAdaPruneを提案する。
UDAの手法として、AdaPruneは関連する技術より優れており、CoRALなどの他のUDAアルゴリズムと相補的であることを示す。
論文 参考訳(メタデータ) (2024-09-18T15:48:59Z) - Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
テスト時間適応(TTA)は、ソースデータへのアクセスや追加のトレーニングなしに、推論段階でラベル付けされていないデータに事前訓練されたモデルの直接適応を可能にする。
本稿では,3つの領域シフトパラダイムを提案する。光グラムから空気中LiDAR,空気中LiDAR,合成-移動レーザー走査である。
実験の結果,分類精度は最大20%mIoUに向上し,他の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-07-08T15:40:28Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
クラスレベルのセグメンテーション性能に基づいてデータを混合する自己学習フレームワークであるDomain Informed Adaptation (IDA) モデルを提案する。
IDAモデルでは、クラスレベルの性能を期待信頼スコア(ECS)によって追跡し、動的スケジュールを用いて異なる領域のデータに対する混合比を決定する。
提案手法は,GTA-Vの都市景観への適応において1.1 mIoU,SynTHIAの都市への適応において0.9 mIoUのマージンで,最先端のUDA-SS法よりも優れる。
論文 参考訳(メタデータ) (2023-03-05T18:16:34Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Reinforcement Learning in the Wild: Scalable RL Dispatching Algorithm
Deployed in Ridehailing Marketplace [12.298997392937876]
本研究では,強化学習に基づくリアルタイムディスパッチアルゴリズムを提案する。
ディディのA/Bテストの運営下にある複数の都市でオンラインに展開され、主要な国際市場の一つで展開されている。
デプロイされたアルゴリズムは、A/Bテストによるドライバーの総収入を1.3%以上改善している。
論文 参考訳(メタデータ) (2022-02-10T16:07:17Z) - UDALM: Unsupervised Domain Adaptation through Language Modeling [79.73916345178415]
複合分類とマスキング言語モデル損失を用いた微調整手順であるUDALMについて紹介します。
本実験では, 混合損失スケールと利用可能な目標データの量で訓練されたモデルの性能を, 停止基準として有効に用いることを示した。
この方法は、amazon reviewsセンチメントデータセットの12のドメインペアで評価され、9.1.74%の精度が得られ、最先端よりも1.11%の絶対的な改善が得られます。
論文 参考訳(メタデータ) (2021-04-14T19:05:01Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
WSJ をソースドメインとし,TED-Lium 3 とSWITCHBOARD を併用したドメイン適応実験を行った。
論文 参考訳(メタデータ) (2020-11-26T18:51:26Z) - Similarity-based data mining for online domain adaptation of a sonar ATR
system [2.064612766965483]
本稿では,新しいデータ選択手法を用いて,自動目標認識アルゴリズムのオンライン微調整を提案する。
提案したデータマイニング手法は視覚的類似性に依存し,従来のハードマイニング手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-16T09:07:54Z) - Instance Adaptive Self-Training for Unsupervised Domain Adaptation [19.44504738538047]
セマンティックセグメンテーションの課題に対して,UDAのためのインスタンス適応型自己学習フレームワークを提案する。
擬似ラベルの品質を効果的に向上するために,インスタンス適応セレクタを用いた新しい擬似ラベル生成戦略を開発した。
我々の手法は簡潔で効率的であり、他の教師なし領域適応法に容易に一般化できる。
論文 参考訳(メタデータ) (2020-08-27T15:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。