Evaluation of deep learning-based myocardial infarction quantification
using Segment CMR software
- URL: http://arxiv.org/abs/2012.09070v1
- Date: Wed, 16 Dec 2020 16:49:50 GMT
- Title: Evaluation of deep learning-based myocardial infarction quantification
using Segment CMR software
- Authors: Olivier Rukundo
- Abstract summary: The author evaluates the preliminary work related to automating the quantification of the size of the myocardial infarction (MI) using deep learning in Segment cardiovascular magnetic resonance (CMR) software.
Experimental evaluation of the size of the MI shows that more than 50 % (average infarct scar volume), 75% (average infarct scar percentage), and 65 % (average microvascular obstruction percentage) of the network-based results are approximately very close to the expert delineation-based results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, the author evaluates the preliminary work related to
automating the quantification of the size of the myocardial infarction (MI)
using deep learning in Segment cardiovascular magnetic resonance (CMR)
software. Here, deep learning is used to automate the segmentation of
myocardial boundaries before triggering the automatic quantification of the
size of the MI using the expectation-maximization, weighted intensity, a priori
information (EWA) algorithm incorporated in the Segment CMR software.
Experimental evaluation of the size of the MI shows that more than 50 %
(average infarct scar volume), 75% (average infarct scar percentage), and 65 %
(average microvascular obstruction percentage) of the network-based results are
approximately very close to the expert delineation-based results. Also, in an
experiment involving the visualization of myocardial and infarct contours, in
all images of the selected stack, the network and expert-based results tie in
terms of the number of infarcted and contoured images.
Related papers
- Deep Learning Pipeline for Fully Automated Myocardial Infarct Segmentation from Clinical Cardiac MR Scans [0.0]
The aim of this study is to develop and evaluate a deep learning-based method that allows to perform infarct segmentation in a fully-automated way.
arXiv Detail & Related papers (2025-02-05T15:29:28Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Ensemble Learning of Myocardial Displacements for Myocardial Infarction
Detection in Echocardiography [15.153823114115307]
Early detection and localization of myocardial infarction can reduce the severity of cardiac damage.
Deep learning techniques have shown promise for detecting MI in echocardiographic images.
Our study introduces a robust method that combines features from multiple segmentation models to improve MI classification performance.
arXiv Detail & Related papers (2023-03-12T20:16:14Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Deep Learning methods for automatic evaluation of delayed
enhancement-MRI. The results of the EMIDEC challenge [21.93792387878765]
The EMIDEC challenge was to evaluate if deep learning methods can distinguish between normal and pathological cases.
The database consists of 150 exams divided into 50 cases with normal MRI after injection of a contrast agent and 100 cases with myocardial infarction.
The results show that the automatic classification of an exam is a reachable task.
arXiv Detail & Related papers (2021-08-09T13:15:25Z) - Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI [12.940103904327655]
We propose a cascaded convolutional neural network for automatic myocardial infarction segmentation from cardiac MRI.
Our method is evaluated on the MICCAI 2020 EMIDEC challenge dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for myocardium, infarction and no-reflow respectively.
arXiv Detail & Related papers (2020-12-28T07:41:10Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark
Study from Multi-Sequence Cardiac MR Segmentation Challenge [43.01944884184009]
This paper presents the selective results from the Multi-Sequence MR (MS-CMR) challenge, in conjunction with MII 2019.
It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation and compare them objectively.
The success of these methods was mainly attributed to the inclusion of auxiliary sequences from the MS-CMR images.
arXiv Detail & Related papers (2020-06-22T17:04:38Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.