論文の概要: You Are What You Tweet: Profiling Users by Past Tweets to Improve Hate
Speech Detection
- arxiv url: http://arxiv.org/abs/2012.09090v1
- Date: Wed, 16 Dec 2020 17:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 10:06:06.676634
- Title: You Are What You Tweet: Profiling Users by Past Tweets to Improve Hate
Speech Detection
- Title(参考訳): あなたがツイートしているもの:過去のツイートでユーザーをプロファイリングしてヘイトスピーチの検出を改善する
- Authors: Prateek Chaudhry and Matthew Lease
- Abstract要約: 我々は,新しい発話がヘイトスピーチを構成するか否かをより正確に予測するために,過去の発話によるユーザを情報として調査する。
これを評価するために、Twitterのヘイトスピーチデータセットを3つ追加のタイムラインデータで拡張し、この追加コンテキストを強力なベースラインモデルに組み込む。
有望な結果はさらなる調査のメリットを示唆するが、分析はアノテーションのスキームやプロセスの違いやtwitter apiの制限、データ共有ポリシーによって複雑である。
- 参考スコア(独自算出の注目度): 5.203329540700176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech detection research has predominantly focused on purely
content-based methods, without exploiting any additional context. We briefly
critique pros and cons of this task formulation. We then investigate profiling
users by their past utterances as an informative prior to better predict
whether new utterances constitute hate speech. To evaluate this, we augment
three Twitter hate speech datasets with additional timeline data, then embed
this additional context into a strong baseline model. Promising results suggest
merit for further investigation, though analysis is complicated by differences
in annotation schemes and processes, as well as Twitter API limitations and
data sharing policies.
- Abstract(参考訳): ヘイトスピーチ検出の研究は、追加の文脈を使わずに、純粋にコンテンツベースの手法に重点を置いている。
我々はこの課題の定式化を簡潔に批判する。
次に,新しい発話がヘイトスピーチであるか否かを予測するために,過去の発話によるユーザを情報として調査する。
これを評価するために、Twitterのヘイトスピーチデータセットを3つ追加のタイムラインデータで拡張し、この追加コンテキストを強力なベースラインモデルに組み込む。
有望な結果はさらなる調査のメリットを示唆するが、分析はアノテーションのスキームやプロセスの違いやtwitter apiの制限、データ共有ポリシーによって複雑である。
関連論文リスト
- Hate Speech Detection in Limited Data Contexts using Synthetic Data
Generation [1.9506923346234724]
本稿では,限られたデータコンテキストにおいて,オンラインヘイトスピーチ検出のためのデータ不足の問題に対処するデータ拡張手法を提案する。
対象言語におけるヘイトスピーチデータの新しい例を合成する3つの方法を提案する。
以上の結果から, 合成データを用いたモデルでは, 対象領域で利用可能なサンプルに対してのみ学習したモデルが比較可能であり, 性能が良好である場合も見いだされた。
論文 参考訳(メタデータ) (2023-10-04T15:10:06Z) - On the Challenges of Building Datasets for Hate Speech Detection [0.0]
我々はまず,データ中心のレンズを用いてヘイトスピーチ検出を取り巻く問題を分析する。
次に、データ生成パイプラインを7つの広範囲にわたってカプセル化する、包括的なフレームワークの概要を示します。
論文 参考訳(メタデータ) (2023-09-06T11:15:47Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
音声言語理解(SLU)タスクは、音声研究コミュニティで何十年にもわたって研究されてきた。
SLUタスクベンチマークはそれほど多くはなく、既存のベンチマークの多くは、すべての研究者が自由に利用できないデータを使っている。
最近の研究は、いくつかのタスクにそのようなベンチマークを導入し始めている。
論文 参考訳(メタデータ) (2022-12-20T18:39:59Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
我々は,Twitter上のメディアからのニュース投稿に対するユーザの反応に基づいた,文脈的ヘイトスピーチ検出のための新しいコーパスを提供する。
このコーパスはリオプラテンセ方言のスペイン語で収集され、新型コロナウイルスのパンデミックに関連するヘイトスピーチに焦点を当てている。
論文 参考訳(メタデータ) (2022-10-02T09:04:47Z) - Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference [4.885207279350052]
本稿では,自然言語推論フレームワークにおけるヘイトスピーチ検出を強化するために,感情ハッシュタグを活用する新しい手法を提案する。
我々は,(1)オンライン投稿と感情ハッシュタグ間の意味的関係推論,(2)これらの投稿に対する感情分類の2つのタスクを同時に実行する新しいフレームワークSRICを設計する。
論文 参考訳(メタデータ) (2022-04-14T15:03:35Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - An Information Retrieval Approach to Building Datasets for Hate Speech
Detection [3.587367153279349]
「一般的な慣行は、既知の憎しみの言葉を含むツイートを注釈するだけである。」
第二の課題は、ヘイトスピーチの定義が高度に変動し、主観的である傾向があることである。
我々の重要な洞察は、ヘイトスピーチの希少性と主観性が情報検索(IR)の関連性に類似していることである。
論文 参考訳(メタデータ) (2021-06-17T19:25:39Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。