論文の概要: Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference
- arxiv url: http://arxiv.org/abs/2204.07010v1
- Date: Thu, 14 Apr 2022 15:03:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-15 17:09:07.129714
- Title: Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference
- Title(参考訳): データ拡張意味関係推論による反asianヘイトスピーチ検出
- Authors: Jiaxuan Li and Yue Ning
- Abstract要約: 本稿では,自然言語推論フレームワークにおけるヘイトスピーチ検出を強化するために,感情ハッシュタグを活用する新しい手法を提案する。
我々は,(1)オンライン投稿と感情ハッシュタグ間の意味的関係推論,(2)これらの投稿に対する感情分類の2つのタスクを同時に実行する新しいフレームワークSRICを設計する。
- 参考スコア(独自算出の注目度): 4.885207279350052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the spreading of hate speech on social media in recent years, automatic
detection of hate speech is becoming a crucial task and has attracted attention
from various communities. This task aims to recognize online posts (e.g.,
tweets) that contain hateful information. The peculiarities of languages in
social media, such as short and poorly written content, lead to the difficulty
of learning semantics and capturing discriminative features of hate speech.
Previous studies have utilized additional useful resources, such as sentiment
hashtags, to improve the performance of hate speech detection. Hashtags are
added as input features serving either as sentiment-lexicons or extra context
information. However, our close investigation shows that directly leveraging
these features without considering their context may introduce noise to
classifiers. In this paper, we propose a novel approach to leverage sentiment
hashtags to enhance hate speech detection in a natural language inference
framework. We design a novel framework SRIC that simultaneously performs two
tasks: (1) semantic relation inference between online posts and sentiment
hashtags, and (2) sentiment classification on these posts. The semantic
relation inference aims to encourage the model to encode sentiment-indicative
information into representations of online posts. We conduct extensive
experiments on two real-world datasets and demonstrate the effectiveness of our
proposed framework compared with state-of-the-art representation learning
models.
- Abstract(参考訳): 近年,ソーシャルメディア上でのヘイトスピーチの普及に伴い,ヘイトスピーチの自動検出が重要な課題となり,様々なコミュニティから注目を集めている。
このタスクは、嫌がらせのある情報を含むオンライン投稿(例えばツイート)を認識することを目的としている。
短文や短文などのソーシャルメディアにおける言語の特異性は、意味論を学習し、ヘイトスピーチの識別的特徴を捉えることの難しさに繋がる。
これまでの研究では、感情のハッシュタグなどの有用なリソースを使用して、ヘイトスピーチ検出のパフォーマンスを改善してきた。
ハッシュタグは感情レキシコンや追加のコンテキスト情報として機能する入力機能として追加される。
しかし,これらの特徴を文脈を考慮せずに直接活用することは,分類器にノイズをもたらす可能性がある。
本稿では,自然言語推論フレームワークにおけるヘイトスピーチ検出を強化するために,感情ハッシュタグを活用する新しい手法を提案する。
我々は,(1)オンライン投稿と感情ハッシュタグ間の意味関係推論,(2)投稿に対する感情分類,の2つのタスクを同時に行う新しいフレームワークsricを設計した。
意味関係推論は、感情を表わす情報をオンライン投稿の表現にエンコードすることをモデルに促すことを目的としている。
実世界の2つのデータセットについて広範な実験を行い、提案フレームワークの有効性を最先端の表現学習モデルと比較した。
関連論文リスト
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
本稿では,英語におけるヘイトスピーチを検出するために,共有感情表現と統合された新しいマルチタスクモデルを提案する。
我々は、感情分析とトランスフォーマーに基づく訓練モデルを利用することで、複数のデータセット間でのヘイトスピーチの検出を大幅に改善できると結論付けた。
論文 参考訳(メタデータ) (2024-11-03T04:11:33Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
我々は,Twitter上のメディアからのニュース投稿に対するユーザの反応に基づいた,文脈的ヘイトスピーチ検出のための新しいコーパスを提供する。
このコーパスはリオプラテンセ方言のスペイン語で収集され、新型コロナウイルスのパンデミックに関連するヘイトスピーチに焦点を当てている。
論文 参考訳(メタデータ) (2022-10-02T09:04:47Z) - Improved two-stage hate speech classification for twitter based on Deep
Neural Networks [0.0]
ヘイトスピーチ(Hate speech)は、虐待的な言葉の使用を含む、オンラインハラスメントの一種である。
この研究で提案するモデルは、LSTMニューラルネットワークアーキテクチャに基づく既存のアプローチの拡張である。
本研究は,16kツイートの公開コーパスで評価された2段階目の提案手法の性能比較を含む。
論文 参考訳(メタデータ) (2022-06-08T20:57:41Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。