論文の概要: Relational Boosted Bandits
- arxiv url: http://arxiv.org/abs/2012.09220v1
- Date: Wed, 16 Dec 2020 19:24:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:10:00.078998
- Title: Relational Boosted Bandits
- Title(参考訳): リレーショナルブーイングバンド
- Authors: Ashutosh Kakadiya and Sriraam Natarajan and Balaraman Ravindran
- Abstract要約: ブースト木に基づくドメインに対するBoost Bandits(2,) acontextual algorithmを提案する。
リンク予測や関係分類,レコメンデーションといったタスクにおけるRB2の有効性と解釈性を実証的に実証した。
- 参考スコア(独自算出の注目度): 31.461919418139438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contextual bandits algorithms have become essential in real-world user
interaction problems in recent years. However, these algorithms rely on context
as attribute value representation, which makes them unfeasible for real-world
domains like social networks are inherently relational. We propose Relational
Boosted Bandits(RB2), acontextual bandits algorithm for relational domains
based on (relational) boosted trees. RB2 enables us to learn interpretable and
explainable models due to the more descriptive nature of the relational
representation. We empirically demonstrate the effectiveness and
interpretability of RB2 on tasks such as link prediction, relational
classification, and recommendations.
- Abstract(参考訳): コンテキストバンディットアルゴリズムは,近年,実世界のユーザインタラクション問題において必須となっている。
しかし、これらのアルゴリズムは属性の値表現としてコンテキストに依存しており、ソーシャルネットワークのような現実世界のドメインは本質的に関係性がない。
本稿では,(関係)ブースト木に基づく関係領域の文脈的バンドイットアルゴリズムであるrelational boosted bandits(rb2)を提案する。
RB2により、関係表現のより記述的な性質から解釈可能で説明可能なモデルを学ぶことができる。
リンク予測や関係分類,レコメンデーションといったタスクにおけるRB2の有効性と解釈性を実証的に示す。
関連論文リスト
- Neural Bandit with Arm Group Graph [37.651541940052724]
コンテキストブレイディットは、コンテキスト情報に基づいて最も高い報酬を持つ最適なアームのセットを識別することを目的としている。
我々は新しいモデルであるArm Group Graph (AGG)を導入し、ノードはアームのグループを表し、重み付きエッジはグループ間の相関を定式化する。
本稿では,AGGの豊富な情報を活用するために,ニューラルネットワークが報酬を推定するように設計された帯域幅アルゴリズムAGG-UCBを提案する。
論文 参考訳(メタデータ) (2022-06-08T02:16:11Z) - Generalizing Hierarchical Bayesian Bandits [14.986031916712108]
文脈的盗賊は、不確実性の下で行動するためのオンライン学習の一般的かつ実践的なフレームワークである。
本研究では,2段階のグラフィカルモデルを用いて,そのような相関関係を捉えるための一般的なフレームワークを提案する。
本稿では,この構造を用いて効率的に探索し,ベイズを後悔させるトンプソンサンプリングアルゴリズムG-HierTSを提案する。
論文 参考訳(メタデータ) (2022-05-30T14:17:56Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
非教師なし関係抽出は、関係範囲や分布に関する事前情報のない自然言語文からエンティティ間の関係を抽出することを目的としている。
本稿では,階層間注目を用いた階層的特徴空間から階層的信号を導出する機能を持つ,HiUREという新しいコントラスト学習フレームワークを提案する。
2つの公開データセットの実験結果は、最先端モデルと比較した場合の教師なし関係抽出におけるHiUREの有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-05-04T17:56:48Z) - Automatically Generating Counterfactuals for Relation Exaction [18.740447044960796]
関係抽出(RE)は自然言語処理の基本課題である。
現在のディープニューラルモデルは高い精度を達成しているが、スプリアス相関の影響を受けやすい。
我々は、エンティティの文脈的反事実を導出するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2022-02-22T04:46:10Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Link Prediction on N-ary Relational Data Based on Relatedness Evaluation [61.61555159755858]
我々は,n-aryリレーショナルデータ上でリンク予測を行うNaLPという手法を提案する。
各 n 個の関係事実を、その役割と役割と値のペアの集合として表現する。
実験結果は,提案手法の有効性と有用性を検証した。
論文 参考訳(メタデータ) (2021-04-21T09:06:54Z) - Role-Aware Modeling for N-ary Relational Knowledge Bases [38.40941919126033]
n-aryリレーショナルKBにおける事実に対する役割認識モデリング(RAM)を提案する。
RAMは基底ベクトルを含む潜在空間を探索し、これらのベクトルの線形結合によって役割を表す。
この目的のために、特定の役割や実体によって構成される事実の妥当性を測定するための多線形スコアリング関数を提供する。
論文 参考訳(メタデータ) (2021-04-20T06:37:22Z) - Improved Branch and Bound for Neural Network Verification via Lagrangian
Decomposition [161.09660864941603]
ニューラルネットワークの入出力特性を公式に証明するためのブランチとバウンド(BaB)アルゴリズムのスケーラビリティを改善します。
活性化に基づく新しい分岐戦略とBaBフレームワークであるブランチとデュアルネットワーク境界(BaDNB)を提案する。
BaDNBは、従来の完全検証システムを大きなマージンで上回り、対数特性で平均検証時間を最大50倍に削減した。
論文 参考訳(メタデータ) (2021-04-14T09:22:42Z) - ZS-BERT: Towards Zero-Shot Relation Extraction with Attribute
Representation Learning [10.609715843964263]
目に見える関係と見えない関係のテキスト記述を組み込んでゼロショット関係抽出問題を定式化する。
本稿では,手作りラベリングや複数対属性分類を使わずに,目に見えない関係を直接予測する,新しいマルチタスク学習モデルであるゼロショットBERTを提案する。
2つのよく知られたデータセットで行われた実験では、ZS-BERTが少なくとも13.54%のF1スコアの改善によって既存の方法より優れていることが示されています。
論文 参考訳(メタデータ) (2021-04-10T06:53:41Z) - Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent
Semantic Parsing [52.24507547010127]
ドメイン間コンテキスト依存のセマンティック解析は研究の新たな焦点である。
本稿では,コンテキストの発話,トークン,データベーススキーマ,会話の進行に伴う複雑なインタラクションを効果的にモデル化する動的グラフフレームワークを提案する。
提案したフレームワークは既存のモデルを大きなマージンで上回り、2つの大規模ベンチマークで新しい最先端性能を達成する。
論文 参考訳(メタデータ) (2021-01-05T18:11:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。