論文の概要: Relevance-aware Algorithmic Recourse
- arxiv url: http://arxiv.org/abs/2405.19072v1
- Date: Wed, 29 May 2024 13:25:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:10:39.192232
- Title: Relevance-aware Algorithmic Recourse
- Title(参考訳): Relevance-Aware Algorithmic Recourse
- Authors: Dongwhi Kim, Nuno Moniz,
- Abstract要約: アルゴリズムのリコースは、予測モデルによる決定を明確にするためのツールとして現れます。
現在のアルゴリズム的リコース法では、すべてのドメイン値が等しく扱われるが、現実の環境では非現実的である。
本稿では、回帰タスクにアルゴリズム・リコースを適用する際に、関連性の概念を活用する新しいフレームワーク、Relevance-Aware Algorithmic Recourse (RAAR)を提案する。
- 参考スコア(独自算出の注目度): 3.6141428739228894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning continues to gain prominence, transparency and explainability are increasingly critical. Without an understanding of these models, they can replicate and worsen human bias, adversely affecting marginalized communities. Algorithmic recourse emerges as a tool for clarifying decisions made by predictive models, providing actionable insights to alter outcomes. They answer, 'What do I have to change?' to achieve the desired result. Despite their importance, current algorithmic recourse methods treat all domain values equally, which is unrealistic in real-world settings. In this paper, we propose a novel framework, Relevance-Aware Algorithmic Recourse (RAAR), that leverages the concept of relevance in applying algorithmic recourse to regression tasks. We conducted multiple experiments on 15 datasets to outline how relevance influences recourses. Results show that relevance contributes algorithmic recourses comparable to well-known baselines, with greater efficiency and lower relative costs.
- Abstract(参考訳): 機械学習が普及し続ければ、透明性と説明可能性もますます重要になる。
これらのモデルを理解しなければ、人間の偏見を再現し、悪化させ、疎外化コミュニティに悪影響を及ぼす可能性がある。
アルゴリズムのリコースは、予測モデルによる決定を明確にするためのツールとして現れ、結果を変えるための実用的な洞察を提供する。
と答え、望ましい結果を達成する。
その重要性にも拘わらず、現在のアルゴリズムのリコース手法はすべてのドメイン値を等しく扱い、現実の環境では非現実的である。
本稿では,レグレッションタスクにアルゴリズム・リコースを適用する際に,関連性の概念を活用する新しいフレームワークであるRelevance-Aware Algorithmic Recourse (RAAR)を提案する。
我々は15のデータセットで複数の実験を行い、関連性が関係性にどのように影響するかを概説した。
その結果、関連性はよく知られたベースラインに匹敵するアルゴリズム的リコースに寄与し、高い効率と相対コストが低下することがわかった。
関連論文リスト
- Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - FAIRLEARN:Configurable and Interpretable Algorithmic Fairness [1.2183405753834557]
トレーニングサンプルから生じるバイアスや、データサンプルに関する暗黙の仮定を緩和する必要がある。
最適化の異なる段階でバイアスを検出し緩和することで、学習アルゴリズムを公平にするために多くのアプローチが提案されている。
本稿では,ユーザの制約を最適化手順に組み込むことで,公平なアルゴリズムを生成するFAIRLEARN手順を提案する。
論文 参考訳(メタデータ) (2021-11-17T03:07:18Z) - Explaining Algorithmic Fairness Through Fairness-Aware Causal Path
Decomposition [37.823248189626014]
本稿では,モデルの相違点の同定問題について検討する。
特徴重要度を学習する既存の解釈方法とは異なり,特徴変数間の因果関係を考察する。
我々のフレームワークはまた、モデルに依存しないものであり、様々な量的格差の尺度に適用できる。
論文 参考訳(メタデータ) (2021-08-11T17:23:47Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Coping with Mistreatment in Fair Algorithms [1.2183405753834557]
教師付き学習環境におけるアルゴリズムの公平性を検討し,等価機会指標の分類器最適化の効果を検討する。
このバイアスを軽減するための概念的にシンプルな方法を提案する。
提案手法を厳密に解析し,その効果を示す実世界データセット上で評価する。
論文 参考訳(メタデータ) (2021-02-22T03:26:06Z) - Loss Bounds for Approximate Influence-Based Abstraction [81.13024471616417]
影響に基づく抽象化は、システムの残りの部分が与える「影響」とともに、局所的なサブプロブレムをモデル化することでレバレッジを得ることを目的としている。
本稿では,理論的観点から,そのような手法の性能について考察する。
交叉エントロピーで訓練されたニューラルネットワークは、近似的な影響表現を学習するのに適していることを示す。
論文 参考訳(メタデータ) (2020-11-03T15:33:10Z) - Metrics and methods for a systematic comparison of fairness-aware
machine learning algorithms [0.0]
この研究はこの種の最も包括的なものである。
フェアネス、予測性能、キャリブレーション品質、28種類のモデリングパイプラインの速度を考慮に入れている。
また,フェアネスを意識したアルゴリズムは,予測力の低下を伴わずにフェアネスを誘導できることがわかった。
論文 参考訳(メタデータ) (2020-10-08T13:58:09Z) - Learning Unbiased Representations via R\'enyi Minimization [13.61565693336172]
本稿では,HGR(Hirschfeld-Gebel-Renyi)最大相関係数を用いて,不偏表現を学習する逆アルゴリズムを提案する。
我々は、我々のアプローチを実証的に評価し、比較し、この分野における既存の作業よりも大幅に改善したことを示す。
論文 参考訳(メタデータ) (2020-09-07T15:48:24Z) - Offline Contextual Bandits with Overparameterized Models [52.788628474552276]
オフラインの文脈的盗賊にも同じ現象が起こるかどうかを問う。
この相違は, 目的の強調安定性によるものであることを示す。
大規模なニューラルネットワークを用いた実験では、アクション安定な値ベース目標と不安定なポリシベース目標とのギャップは、大きなパフォーマンス差をもたらす。
論文 参考訳(メタデータ) (2020-06-27T13:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。