Quantum Algorithm for Simulating Single-Molecule Electron Transport
- URL: http://arxiv.org/abs/2012.09231v1
- Date: Wed, 16 Dec 2020 19:53:14 GMT
- Title: Quantum Algorithm for Simulating Single-Molecule Electron Transport
- Authors: Soran Jahangiri, Juan Miguel Arrazola, Alain Delgado
- Abstract summary: We introduce a quantum algorithm to efficiently calculate the electronic current through single-molecule junctions.
We show that a quantum computer programmed to simulate vibronic transitions between different charge states of a molecule can be used to compute sequential electron transfer rates and electric current.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An accurate description of electron transport at a molecular level requires a
precise treatment of quantum effects. These effects play a crucial role in
determining the electron transport properties of single molecules, such as
current-voltage curves, which can be challenging to simulate classically. Here
we introduce a quantum algorithm to efficiently calculate the electronic
current through single-molecule junctions in the weak-coupling regime. We show
that a quantum computer programmed to simulate vibronic transitions between
different charge states of a molecule can be used to compute sequential
electron transfer rates and electric current. In the harmonic approximation,
the algorithm can be implemented using Gaussian boson sampling devices, which
are a near-term platform for photonic quantum computing. We apply the algorithm
to simulate the current and conductance of a magnesium porphine molecule. The
simulations demonstrate quantum effects that are manifested as discrete steps
in the current and conductance, in agreement with experimental and theoretical
data.
Related papers
- Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules [0.0]
We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
arXiv Detail & Related papers (2024-09-06T17:42:34Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Quantum Computing Simulation of a Mixed Spin-Boson Hamiltonian and Its Performance for a Cavity Quantum Electrodynamics Problem [0.0]
We present a methodology for simulating a phase transition in a pair of cavities that permit photon hopping.
We find that the simulation can be performed with a modest amount of quantum resources.
arXiv Detail & Related papers (2023-10-17T15:25:35Z) - A Quantum-compute Algorithm for Exact Laser-driven Electron Dynamics in
Molecules [0.0]
We simulate the laser-driven electron dynamics in small molecules such as lithium hydride.
Results are compared with the time-dependent full configuration interaction method (TD-FCI)
arXiv Detail & Related papers (2022-05-21T09:35:05Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
We develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules.
We demonstrate our method on IBM superconducting quantum processors.
We conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime.
arXiv Detail & Related papers (2021-10-03T09:56:47Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.