Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules
- URL: http://arxiv.org/abs/2409.04427v1
- Date: Fri, 6 Sep 2024 17:42:34 GMT
- Title: Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules
- Authors: Jong-Kwon Ha, Ryan J. MacDonell,
- Abstract summary: We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the coupled electron-nuclear dynamics in molecules induced by light-matter interactions is crucial for potential applications of photochemical processes, but it is challenging due to the high computational costs of exact quantum dynamics simulations. Quantum computing has the potential to reduce the computational cost required for exact quantum dynamics simulations by exploiting the quantum nature of the computational device. However, existing quantum algorithms for coupled electron-nuclear dynamics simulation either require fault-tolerant devices, or use the Born-Oppenheimer (BO) approximation and a truncation of the electronic basis. In this work, we present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework, i.e. without the separation of electrons and nuclei, by mapping the molecular Hamiltonian to a device with coupled qubits and bosonic modes. We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms. The computational cost of our approach is also exponentially lower than existing BO-based quantum algorithms. Furthermore, our approach has a much smaller resource scaling than the existing pre-BO quantum algorithms for chemical dynamics. The low cost of our approach will enable an exact treatment of electron-nuclear dynamics on near-term quantum devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Nonadiabatic nuclear-electron dynamics: a quantum computing approach [0.0]
We propose a quantum algorithm for the simulation of the time-evolution of molecular systems in the second quantization framework.
We show how the entanglement between the electronic and nuclear degrees of freedom can persist over long times if electrons are not adiabatically following the nuclear displacement.
The proposed quantum algorithm may become a valid candidate for the study of electron-nuclear quantum phenomena when sufficiently powerful quantum computers become available.
arXiv Detail & Related papers (2023-06-02T16:44:22Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Computing Electronic Correlation Energies using Linear Depth Quantum
Circuits [0.0]
We demonstrate a variational NISQ-friendly algorithm that generates a set of mean-field Hartree-Fock ansatzes.
We tested the algorithm on several small molecules, both with classical simulations and on cloud quantum processors.
As fidelities of quantum processors continue to improve our algorithm will enable the study of larger molecules.
arXiv Detail & Related papers (2022-07-08T15:08:30Z) - Extending the reach of quantum computing for materials science with
machine learning potentials [0.3352108528371308]
We propose a strategy to extend the scope of quantum computational methods to large scale simulations using a machine learning potential.
We investigate the trainability of a machine learning potential selecting various sources of noise.
We construct the first machine learning potential from data computed on actual IBM Quantum processors for a hydrogen molecule.
arXiv Detail & Related papers (2022-03-14T15:59:30Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Non-adiabatic molecular quantum dynamics with quantum computers [0.0]
We propose a quantum algorithm for the simulation of fast non-adiabatic chemical processes.
In particular, we introduce a first-quantization method for the potential time evolution of a wavepacket on two harmonic energy surfaces.
arXiv Detail & Related papers (2020-06-16T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.