Precise determination of low energy electronuclear Hamiltonian for
LiY$_{1-x}$Ho$_{x}$F$_{4}$
- URL: http://arxiv.org/abs/2012.09233v1
- Date: Wed, 16 Dec 2020 19:56:38 GMT
- Title: Precise determination of low energy electronuclear Hamiltonian for
LiY$_{1-x}$Ho$_{x}$F$_{4}$
- Authors: A. Beckert, R.I. Hermans, M. Grimm, J.R. Freeman, E.H. Linfield, A.G.
Davies, M. M\"uller, H. Sigg, S. Gerber, G. Matmon, G. Aeppli
- Abstract summary: We use optical spectroscopy methods to measure the lowest crystal-field energies of the rare-earth quantum magnet LiY$_1-x$Ho$_x$F$4$.
We are able to observe energy level splittings due to the $6mathrmLi$ and $7mathrmLi$ isotopes, as well as non-equidistantly spaced hyperfine transitions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use complementary optical spectroscopy methods to directly measure the
lowest crystal-field energies of the rare-earth quantum magnet
LiY$_{1-x}$Ho$_{x}$F$_{4}$, including their hyperfine splittings, with more
than 10 times higher resolution than previous work. We are able to observe
energy level splittings due to the $^6\mathrm{Li}$ and $^7\mathrm{Li}$
isotopes, as well as non-equidistantly spaced hyperfine transitions originating
from dipolar and quadrupolar hyperfine interactions. We provide refined crystal
field parameters and extract the dipolar and quadrupolar hyperfine constants
${A_J=0.02703\pm0.00003}$ $\textrm{cm}^{-1}$ and ${B= 0.04 \pm0.01}$
$\textrm{cm}^{-1}$, respectively. Thereupon we determine all crystal-field
energy levels and magnetic moments of the $^5I_8$ ground state manifold,
including the (non-linear) hyperfine corrections. The latter match the
measurement-based estimates. The scale of the non-linear hyperfine corrections
sets an upper bound for the inhomogeneous line widths that would still allow
for unique addressing of a selected hyperfine transition. e.g. for quantum
information applications. Additionally, we establish the far-infrared,
low-temperature refractive index of LiY$_{1-x}$Ho$_{x}$F$_{4}$.
Related papers
- Spectroscopy and Crystal-Field Analysis of Low -Symmetry Er$^{3+}$ Centres in K$_2$YF$_5$ Microparticles [0.0]
K$$YF$_5$ crystals doped with lanthanide ions have a variety of possible optical applications.
electron-paramagnetic resonance studies have demonstrated that lanthanide ions substitute for yttrium in sites of C$_rm s$ local ambiguities.
arXiv Detail & Related papers (2024-09-24T00:23:38Z) - Spectroscopy, Crystal-Field, and Transition Intensity Analyses of the C$_{\rm 3v}$(O$^{2-}$) Centre in Er$^{3+}$ Doped CaF$_{2}$ Crystals [0.0]
We present detailed absorption and laser site-selective spectroscopy of the C$_rm 3v$(O$2-$) centre in CaF$$:Er$3+$.
The transition has a low-temperature inhomogeneous line of 1 GHz with hyperfine structure observable from the $167$Er isotope.
arXiv Detail & Related papers (2024-09-23T23:52:40Z) - Aggregate Frequency Width, Nuclear Hyperfine Coupling and Jahn-Teller Effect of $Cu^{2+}$ Impurity Ion ESR in $SrLaAlO_4$ Dielectric Resonator at $20$ Millikelvin [0.0]
impurity paramagnetic ion, $Cu2+$ substitutes $Al$ in the $SrLaAlO_4$ single crystal lattice.
The anisotropy of the hyperfine structure reveals a characteristics of static Jahn-Teller effect.
arXiv Detail & Related papers (2024-03-24T22:40:36Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Prediction of the Optical Polarization and High Field Hyperfine
Structure Via a Parametrized Crystal-Field Model for the Low Symmetry Centers
in Er$^{3+}$ Doped Y$_{2}$SiO$_{5}$ [0.0]
It is possible to account for the electronic, magnetic and hyperfine structure of the full 4f$11$ configuration of Er$3+$:Y$_2$SiO$_5$.
It is possible to predict both optical polarization behavior and high magnetic field hyperfine structure of transitions in the 1.5 $mu$m telecommunications band.
arXiv Detail & Related papers (2022-06-18T01:24:20Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Four-Dimensional Scaling of Dipole Polarizability in Quantum Systems [55.54838930242243]
Polarizability is a key response property of physical and chemical systems.
We show that polarizability follows a universal four-dimensional scaling law.
This formula is also applicable to many-particle systems.
arXiv Detail & Related papers (2020-10-22T15:42:36Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Ab initio properties of the NaLi molecule in the $a^3\Sigma^+$
electronic state [0.0]
We calculate the electronic and rovibrational structure of ultracold polar and magnetic molecules with spectroscopic accuracy.
We show that quantum chemistry methods are capable of predicting scattering properties of manyelectron systems.
arXiv Detail & Related papers (2020-03-26T17:39:46Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.