論文の概要: Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images
- arxiv url: http://arxiv.org/abs/2012.09250v1
- Date: Wed, 16 Dec 2020 20:34:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:02:32.545370
- Title: Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images
- Title(参考訳): 網膜画像からの血管分割のための重み付き損失関数と群正規化による伝達学習
- Authors: Abdullah Sarhan, Jon Rokne, Reda Alhajj, and Andrew Crichton
- Abstract要約: 血管の血管構造は緑内障や糖尿病網膜症などの網膜疾患の診断に重要である。
深層学習とトランスファー学習を併用した網膜血管のセグメンテーション手法を提案する。
提案手法は,他の手法よりもセグメンテーション精度が高い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vascular structure of blood vessels is important in diagnosing retinal
conditions such as glaucoma and diabetic retinopathy. Accurate segmentation of
these vessels can help in detecting retinal objects such as the optic disc and
optic cup and hence determine if there are damages to these areas. Moreover,
the structure of the vessels can help in diagnosing glaucoma. The rapid
development of digital imaging and computer-vision techniques has increased the
potential for developing approaches for segmenting retinal vessels. In this
paper, we propose an approach for segmenting retinal vessels that uses deep
learning along with transfer learning. We adapted the U-Net structure to use a
customized InceptionV3 as the encoder and used multiple skip connections to
form the decoder. Moreover, we used a weighted loss function to handle the
issue of class imbalance in retinal images. Furthermore, we contributed a new
dataset to this field. We tested our approach on six publicly available
datasets and a newly created dataset. We achieved an average accuracy of 95.60%
and a Dice coefficient of 80.98%. The results obtained from comprehensive
experiments demonstrate the robustness of our approach to the segmentation of
blood vessels in retinal images obtained from different sources. Our approach
results in greater segmentation accuracy than other approaches.
- Abstract(参考訳): 血管の血管構造は緑内障や糖尿病網膜症などの網膜疾患の診断に重要である。
これらの血管の正確なセグメンテーションは、光学ディスクや光学カップのような網膜の物体の検出に役立ち、これらの領域に損傷があるかどうかを決定する。
また,血管構造は緑内障の診断に有用である。
デジタルイメージングとコンピュータビジョン技術の急速な発展は、網膜血管を分割するアプローチを開発する可能性を高めた。
本稿では,深層学習と伝達学習を併用した網膜血管の分節化手法を提案する。
我々は、U-Net構造をエンコーダとしてカスタマイズしたInceptionV3を使い、複数のスキップ接続を使ってデコーダを作った。
さらに,網膜画像におけるクラス不均衡の問題に対処するために重み付き損失関数を用いた。
さらに,この分野に新たなデータセットを寄贈した。
私たちは6つの公開データセットと新しく作成されたデータセットでこのアプローチをテストしました。
平均精度は95.60%、サイス係数は80.98%であった。
総合的な実験から得られた結果は、異なるソースから得られた網膜画像における血管の分画に対する我々のアプローチの堅牢性を示している。
提案手法は,他の手法よりもセグメンテーション精度が高い。
関連論文リスト
- Region Guided Attention Network for Retinal Vessel Segmentation [19.587662416331682]
本稿では,領域誘導型アテンションを用いたエンコーダデコーダ機構に基づく軽量網膜血管セグメンテーションネットワークを提案する。
Dice Losは偽陽性と偽陰性を等しく解析し、モデルがより正確なセグメンテーションを生成するように促す。
ベンチマークデータセットの実験では、最先端の手法と比較して、パフォーマンス(0.8285, 0.8098, 0.9677, 0.8166リコール、精度、精度、F1スコア)が向上した。
論文 参考訳(メタデータ) (2024-07-22T00:08:18Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
ブラディングアイの病気は、しばしば変化した網膜形態と相関し、眼底画像の網膜構造をセグメント化することによって臨床的に識別できる。
深層学習は、医用画像のセグメンテーションにおいて有望であるが、反復的な畳み込みとプール操作への依存は、エッジ情報の表現を妨げる可能性がある。
LMBiS-Net と呼ばれる軽量な画素レベルのCNNを網膜血管のセグメンテーションのために提案する。
論文 参考訳(メタデータ) (2023-09-10T09:03:53Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z) - Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing [27.825969553813092]
血管分節と動脈・静脈の分類は、潜在的な疾患について様々な情報を提供する。
我々は、UNetベースのモデルSeqNetを採用し、背景から船舶を正確に分割し、船舶のタイプを予測する。
実験の結果,AUCを0.98に改善し,DRIVEデータセットの分類精度は0.92に向上した。
論文 参考訳(メタデータ) (2020-05-27T13:06:16Z) - Dense Residual Network for Retinal Vessel Segmentation [8.778525346264466]
走査型レーザー眼鏡視下網膜像において,血管の分画を効果的に行う方法を提案する。
U-Net,「機能マップの再利用」,残差学習に触発され,DRNetと呼ばれる高密度残差ネットワーク構造を提案する。
本手法は,データ拡張を伴わずとも最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-07T20:42:13Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。