論文の概要: Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing
- arxiv url: http://arxiv.org/abs/2005.13337v1
- Date: Wed, 27 May 2020 13:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 09:26:48.136179
- Title: Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing
- Title(参考訳): 血管分別と動脈・静脈分類の術後処理による共同学習
- Authors: Liangzhi Li, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, Hajime
Nagahara
- Abstract要約: 血管分節と動脈・静脈の分類は、潜在的な疾患について様々な情報を提供する。
我々は、UNetベースのモデルSeqNetを採用し、背景から船舶を正確に分割し、船舶のタイプを予測する。
実験の結果,AUCを0.98に改善し,DRIVEデータセットの分類精度は0.92に向上した。
- 参考スコア(独自算出の注目度): 27.825969553813092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal imaging serves as a valuable tool for diagnosis of various diseases.
However, reading retinal images is a difficult and time-consuming task even for
experienced specialists. The fundamental step towards automated retinal image
analysis is vessel segmentation and artery/vein classification, which provide
various information on potential disorders. To improve the performance of the
existing automated methods for retinal image analysis, we propose a two-step
vessel classification. We adopt a UNet-based model, SeqNet, to accurately
segment vessels from the background and make prediction on the vessel type. Our
model does segmentation and classification sequentially, which alleviates the
problem of label distribution bias and facilitates training. To further refine
classification results, we post-process them considering the structural
information among vessels to propagate highly confident prediction to
surrounding vessels. Our experiments show that our method improves AUC to 0.98
for segmentation and the accuracy to 0.92 in classification over DRIVE dataset.
- Abstract(参考訳): 網膜イメージングは様々な疾患の診断に有用なツールである。
しかし、経験豊富な専門家でさえ、網膜画像を読むことは困難で時間がかかります。
自動網膜画像解析への基本的なステップは血管のセグメンテーションと動脈/静脈の分類であり、潜在的な疾患に関する様々な情報を提供する。
網膜画像解析のための既存の自動化手法の性能向上のために,2段階の血管分類を提案する。
我々は、UNetベースのモデルSeqNetを採用し、背景から船舶を正確に分割し、船舶のタイプを予測する。
本モデルは,ラベル分布バイアスの問題を緩和し,学習を容易にするセグメンテーションと分類を逐次行う。
分類結果をさらに洗練するために, 船間構造情報を考慮した後処理を行い, 周囲の船舶に対する信頼性の高い予測を行う。
実験の結果,AUCを0.98に改善し,DRIVEデータセットの分類精度は0.92に向上した。
関連論文リスト
- Cross Feature Fusion of Fundus Image and Generated Lesion Map for Referable Diabetic Retinopathy Classification [1.091626241764448]
糖尿病網膜症(DR)は視覚障害の主要な原因であり、早期発見と診断を必要とする。
本研究では,伝達学習と相互注意機構を利用した高度な相互学習DR分類法を開発した。
2つの公開データセットを利用して、我々の実験は94.6%の精度を示し、現在の最先端の手法を4.4%上回った。
論文 参考訳(メタデータ) (2024-11-06T02:23:38Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
提案するパイプラインは,大量のリアルなOCTA画像を,本質的に一致する基底真理ラベルで合成する。
提案手法は,1) 様々な網膜叢をモデル化した生理的シミュレーション,2) 物理に基づく画像拡張のスイートの2つの新しい構成要素を基礎にしている。
論文 参考訳(メタデータ) (2022-07-22T14:22:22Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images [0.0]
血管の血管構造は緑内障や糖尿病網膜症などの網膜疾患の診断に重要である。
深層学習とトランスファー学習を併用した網膜血管のセグメンテーション手法を提案する。
提案手法は,他の手法よりもセグメンテーション精度が高い。
論文 参考訳(メタデータ) (2020-12-16T20:34:48Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
OCT-Aセグメンテーションデータセット(ROSE)は229枚のOCT-A画像からなり、中心線レベルまたは画素レベルで血管アノテーションを付加する。
次に,スプリットをベースとしたSCF-Net(Coarse-to-Fine vessel segmentation Network)を提案する。
SCF-Netでは、スプリットベース粗いセグメンテーション(SCS)モジュールを最初に導入し、スプリットベースリファインメント(SRN)モジュールを使用して形状・形状を最適化する。
論文 参考訳(メタデータ) (2020-07-10T06:54:19Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。