Environment-assisted quantum transport and mobility edges
- URL: http://arxiv.org/abs/2012.09337v4
- Date: Sun, 5 Sep 2021 04:59:16 GMT
- Title: Environment-assisted quantum transport and mobility edges
- Authors: Donny Dwiputra, Freddy P. Zen
- Abstract summary: Environment-assisted quantum transport (ENAQT) is a unique situation where environmental noise can enhance the transport of an open quantum system.
We find that the ENAQT increases by orders of magnitude and depends on the number of localized eigenstates and disorder strength nonmonotonically.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Environment-assisted quantum transport (ENAQT) is a unique situation where
environmental noise can, counterintuitively, enhance the transport of an open
quantum system. In this paper, we investigate how the presence of a
one-dimensional single-particle mobility edge can generate strong ENAQT. For
this purpose, we study the energy current of a generalized Aubry-Andr\'e-Harper
(AAH) tight binding model coupled at its edges to spin baths of differing
temperature and dephasing noise along the system. We find that the ENAQT
increases by orders of magnitude and depends on the number of localized
eigenstates and disorder strength nonmonotonically. We show that this
enhancement is the result of the cooperation between population uniformization
and localization.
Related papers
- Quasiperiodicity protects quantized transport in disordered systems without gaps [0.0]
We observe quantized currents that survive the addition of bounded local disorder in a driven Aubry-Andr'e-Harper chain.
We propose a protocol, directly realizable in for instance cold atoms or photonic experiments, which leverages this stability to prepare topological many-body states with high Chern numbers.
arXiv Detail & Related papers (2024-07-09T17:11:48Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Localisation determines the optimal noise rate for quantum transport [68.8204255655161]
Localisation and the optimal dephasing rate in 1D chains are studied.
A simple power law captures the interplay between size-dependent and size-independent responses.
Relationship continues to apply at intermediate and high temperature but breaks down in the low temperature limit.
arXiv Detail & Related papers (2021-06-23T17:52:16Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Effects of disorder and interactions on environment assisted quantum
transport [0.0]
We show a surprising situation where the particle current grows with increasing disorder, even without dephasing.
We show that repulsive interactions are detrimental to ENAQT, and lead to an environment-hampered quantum transport.
arXiv Detail & Related papers (2020-05-09T15:19:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.