Temporal LiDAR Frame Prediction for Autonomous Driving
- URL: http://arxiv.org/abs/2012.09409v1
- Date: Thu, 17 Dec 2020 06:19:59 GMT
- Title: Temporal LiDAR Frame Prediction for Autonomous Driving
- Authors: David Deng and Avideh Zakhor
- Abstract summary: We propose a class of novel neural network architectures to predict future LiDAR frames.
Since the ground truth in this application is simply the next frame in the sequence, we can train our models in a self-supervised fashion.
- Score: 1.3706331473063877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anticipating the future in a dynamic scene is critical for many fields such
as autonomous driving and robotics. In this paper we propose a class of novel
neural network architectures to predict future LiDAR frames given previous
ones. Since the ground truth in this application is simply the next frame in
the sequence, we can train our models in a self-supervised fashion. Our
proposed architectures are based on FlowNet3D and Dynamic Graph CNN. We use
Chamfer Distance (CD) and Earth Mover's Distance (EMD) as loss functions and
evaluation metrics. We train and evaluate our models using the newly released
nuScenes dataset, and characterize their performance and complexity with
several baselines. Compared to directly using FlowNet3D, our proposed
architectures achieve CD and EMD nearly an order of magnitude lower. In
addition, we show that our predictions generate reasonable scene flow
approximations without using any labelled supervision.
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - OFMPNet: Deep End-to-End Model for Occupancy and Flow Prediction in Urban Environment [0.0]
We introduce an end-to-end neural network methodology designed to predict the future behaviors of all dynamic objects in the environment.
We propose a novel time-weighted motion flow loss, whose application has shown a substantial decrease in end-point error.
arXiv Detail & Related papers (2024-04-02T19:37:58Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
We present a method to learn compositional predictive models from image observations based on implicit object encoders, Neural Radiance Fields (NeRFs), and graph neural networks.
NeRFs have become a popular choice for representing scenes due to their strong 3D prior.
For planning, we utilize RRTs in the learned latent space, where we can exploit our model and the implicit object encoder to make sampling the latent space informative and more efficient.
arXiv Detail & Related papers (2022-02-24T01:31:29Z) - Scalable Scene Flow from Point Clouds in the Real World [30.437100097997245]
We introduce a new large scale benchmark for scene flow based on the Open dataset.
We show how previous works were bounded based on the amount of real LiDAR data available.
We introduce the model architecture FastFlow3D that provides real time inference on the full point cloud.
arXiv Detail & Related papers (2021-03-01T20:56:05Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.