論文の概要: Task Uncertainty Loss Reduce Negative Transfer in Asymmetric Multi-task
Feature Learning
- arxiv url: http://arxiv.org/abs/2012.09575v1
- Date: Thu, 17 Dec 2020 13:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 17:22:17.992620
- Title: Task Uncertainty Loss Reduce Negative Transfer in Asymmetric Multi-task
Feature Learning
- Title(参考訳): 非対称マルチタスク特徴学習におけるタスク不確かさ損失の負の移動
- Authors: Rafael Peres da Silva, Chayaporn Suphavilai, Niranjan Nagarajan
- Abstract要約: マルチタスク学習(MTL)は、シングルタスク学習(STL)と比較して全体的なタスクパフォーマンスを向上させることができるが、負の転送(NT)を隠すことができる。
非対称マルチタスク特徴学習(AMTFL)は、損失値の高いタスクが他のタスクを学習するための特徴表現に与える影響を小さくすることで、この問題に対処しようとするアプローチである。
2つのデータセット (画像認識と薬理ゲノミクス) におけるntの例を示し, 課題間の相対的信頼度を捉え, タスク損失の重み付けを行うことにより, この課題に挑戦する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning (MTL) is frequently used in settings where a target task
has to be learnt based on limited training data, but knowledge can be leveraged
from related auxiliary tasks. While MTL can improve task performance overall
relative to single-task learning (STL), these improvements can hide negative
transfer (NT), where STL may deliver better performance for many individual
tasks. Asymmetric multitask feature learning (AMTFL) is an approach that tries
to address this by allowing tasks with higher loss values to have smaller
influence on feature representations for learning other tasks. Task loss values
do not necessarily indicate reliability of models for a specific task. We
present examples of NT in two orthogonal datasets (image recognition and
pharmacogenomics) and tackle this challenge by using aleatoric homoscedastic
uncertainty to capture the relative confidence between tasks, and set weights
for task loss. Our results show that this approach reduces NT providing a new
approach to enable robust MTL.
- Abstract(参考訳): マルチタスク学習(MTL)は、限られた訓練データに基づいて目標タスクを学習しなければならない設定で頻繁に使用されるが、関連する補助タスクから知識を活用できる。
mtlはシングルタスク学習(stl)と比較して全体的なタスクパフォーマンスを向上させることができるが、これらの改善は負の転送(nt)を隠すことができる。
非対称マルチタスク特徴学習(AMTFL)は、損失値の高いタスクが他のタスクを学習するための特徴表現に与える影響を小さくすることで、この問題に対処しようとするアプローチである。
タスク損失値は必ずしも特定のタスクのモデルの信頼性を示すものではない。
本稿では,2つの直交データセット(画像認識と薬理ゲノミクス)にNTの例を示し,課題間の相対的信頼度を把握し,タスク損失の重みを設定することで,この課題に対処する。
提案手法は,堅牢なMTLを実現するための新しいアプローチを提供するNTを削減できることを示す。
関連論文リスト
- When to Use Multi-Task Learning vs Intermediate Fine-Tuning for
Pre-Trained Encoder Transfer Learning [15.39115079099451]
近年,自然言語処理における伝達学習(TL)への関心が高まっている。
微調整中に複数の教師付きデータセットを使用するための3つの主要な戦略が登場した。
GLUEデータセットの包括的解析において,3つのTL手法を比較した。
論文 参考訳(メタデータ) (2022-05-17T06:48:45Z) - Exploring the Role of Task Transferability in Large-Scale Multi-Task
Learning [28.104054292437525]
マルチタスク表現学習におけるタスクのスケールと関連性の影響を解消する。
目標タスクが事前に分かっている場合、関連するタスクのより小さなセットでのトレーニングは、大規模なマルチタスクトレーニングと競合する。
論文 参考訳(メタデータ) (2022-04-23T18:11:35Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
マルチタスク学習(MTL)では、複数のタスクを同時に予測するためにジョイントモデルを訓練する。
これらの異なるタスクの勾配が矛盾する可能性があるため、MTLのジョイントモデルを訓練すると、対応するシングルタスクモデルよりも低いパフォーマンスが得られる。
本稿では,パラメータ更新のジョイント方向で合意に達するためのタスクを交渉する交渉ゲームとして,勾配の組み合わせステップを考察する。
論文 参考訳(メタデータ) (2022-02-02T13:21:53Z) - Attentive Task Interaction Network for Multi-Task Learning [4.1372815372396525]
ATI-Netは、各タスクに潜伏する特徴の知識蒸留を採用し、次に特徴マップを組み合わせて、デコーダに改善されたコンテキスト情報を提供する。
注目に基づくマルチタスクネットワークに知識蒸留を導入する新しいアプローチは,技術MTLベースラインの状態を上回ります。
論文 参考訳(メタデータ) (2022-01-25T22:03:20Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
2タスクMTL問題に対する新しい学習フレームワークを提案する。
サイクル一貫性損失とコントラスト学習に着想を得た2つの新たな損失項を定義する。
理論的には、どちらの損失もモデルをより効率的に学習する助けとなり、直進予測と整合する点において、クロスタスクの整合性損失がより良いことを証明している。
論文 参考訳(メタデータ) (2021-11-28T11:55:19Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Conflict-Averse Gradient Descent for Multi-task Learning [49.404555891531786]
マルチタスクモデルを最適化する際の大きな課題は、矛盾する勾配である。
本稿では、平均損失関数を最小化する衝突-逆勾配降下(CAGrad)を導入する。
CAGradは目標を自動的にバランスし、平均損失よりも最小限に確実に収束する。
論文 参考訳(メタデータ) (2021-10-26T22:03:51Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
マルチタスク学習モデルにおいて、どのタスクを一緒にトレーニングすべきかを選択するアプローチを提案する。
本手法は,全タスクを協調学習し,タスクの勾配が他のタスクの損失に影響を及ぼす影響を定量化する。
論文 参考訳(メタデータ) (2021-09-10T02:01:43Z) - Weighted Training for Cross-Task Learning [71.94908559469475]
クロスタスク学習のための重み付きトレーニングアルゴリズムであるTarget-Aware Weighted Training (TAWT)を紹介する。
TAWTは実装が容易で、計算効率が高く、ハイパーパラメータチューニングがほとんど必要とせず、漸近的でない学習理論の保証を享受できることを示す。
副産物として、提案された表現に基づくタスク距離は、クロスタスク学習のいくつかの重要な側面について理論的に原則化された方法で推論することができる。
論文 参考訳(メタデータ) (2021-05-28T20:27:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。