論文の概要: Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks
- arxiv url: http://arxiv.org/abs/2306.04519v1
- Date: Wed, 7 Jun 2023 15:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 13:40:39.934054
- Title: Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks
- Title(参考訳): 補助タスクを用いたマルチタスク学習のためのサンプルレベル重み付け
- Authors: Emilie Gr\'egoire, Hafeez Chaudhary and Sam Verboven
- Abstract要約: マルチタスク学習(MTL)は、関連するタスクと表現を共有することにより、ニューラルネットワークの一般化性能を向上させることができる。
MTLはまた、タスク間の有害な干渉によってパフォーマンスを低下させる。
補助タスクを用いたマルチタスク学習のためのサンプルレベル重み付けアルゴリズムであるSLGradを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) can improve the generalization performance of
neural networks by sharing representations with related tasks. Nonetheless, MTL
can also degrade performance through harmful interference between tasks. Recent
work has pursued task-specific loss weighting as a solution for this
interference. However, existing algorithms treat tasks as atomic, lacking the
ability to explicitly separate harmful and helpful signals beyond the task
level. To this end, we propose SLGrad, a sample-level weighting algorithm for
multi-task learning with auxiliary tasks. Through sample-specific task weights,
SLGrad reshapes the task distributions during training to eliminate harmful
auxiliary signals and augment useful task signals. Substantial generalization
performance gains are observed on (semi-) synthetic datasets and common
supervised multi-task problems.
- Abstract(参考訳): マルチタスク学習(MTL)は、関連するタスクと表現を共有することにより、ニューラルネットワークの一般化性能を向上させることができる。
それでも、MTLはタスク間の有害な干渉によって性能を低下させることができる。
最近の研究は、この干渉の解決策としてタスク固有の損失重み付けを追求している。
しかし、既存のアルゴリズムはタスクをアトミックとして扱い、タスクレベルを超えて有害で有用な信号を明示的に分離する能力がない。
そこで本研究では,補助タスクを用いたマルチタスク学習のためのサンプルレベル重み付けアルゴリズムであるSLGradを提案する。
サンプル固有のタスクウェイトを通じて、SLGradはトレーニング中のタスク分布を再評価し、有害な補助信号を排除し、有用なタスクシグナルを増強する。
実質的な一般化のパフォーマンス向上は、(半)合成データセットと一般的な教師付きマルチタスク問題で観察される。
関連論文リスト
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Deep Task-specific Bottom Representation Network for Multi-Task
Recommendation [36.128708266100645]
本稿では,Deep Task-specific Bottom Representation Network (DTRN)を提案する。
提案した2つのモジュールは、タスクの相互干渉を緩和するためにタスク固有のボトム表現を得る目的を達成することができる。
論文 参考訳(メタデータ) (2023-08-11T08:04:43Z) - Mitigating Task Interference in Multi-Task Learning via Explicit Task
Routing with Non-Learnable Primitives [19.90788777476128]
マルチタスク学習(MTL)は、タスク間の共有情報を活用することで、複数のタスクを達成するための単一のモデルを学ぶことを目指している。
既存のMLLモデルはタスク間の負の干渉に悩まされていることが知られている。
本研究では,非学習可能なプリミティブと明示的なタスクルーティングの相乗的組み合わせによるタスク干渉を軽減するためのETR-NLPを提案する。
論文 参考訳(メタデータ) (2023-08-03T22:34:16Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
補助タスク学習(ATL)は、関連するタスクから得られる知識を活用することにより、目標タスクの性能を向上させることを目的としている。
複数のタスクを同時に学習すると、ターゲットタスクのみを学習するよりも精度が低下することがある。
ForkMergeは、モデルを定期的に複数のブランチにフォークし、タスクの重みを自動的に検索する新しいアプローチである。
論文 参考訳(メタデータ) (2023-01-30T02:27:02Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
マルチタスクモデルを最適化する際の大きな課題は、矛盾する勾配である。
本稿では、平均損失関数を最小化する衝突-逆勾配降下(CAGrad)を導入する。
CAGradは目標を自動的にバランスし、平均損失よりも最小限に確実に収束する。
論文 参考訳(メタデータ) (2021-10-26T22:03:51Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Task Uncertainty Loss Reduce Negative Transfer in Asymmetric Multi-task
Feature Learning [0.0]
マルチタスク学習(MTL)は、シングルタスク学習(STL)と比較して全体的なタスクパフォーマンスを向上させることができるが、負の転送(NT)を隠すことができる。
非対称マルチタスク特徴学習(AMTFL)は、損失値の高いタスクが他のタスクを学習するための特徴表現に与える影響を小さくすることで、この問題に対処しようとするアプローチである。
2つのデータセット (画像認識と薬理ゲノミクス) におけるntの例を示し, 課題間の相対的信頼度を捉え, タスク損失の重み付けを行うことにより, この課題に挑戦する。
論文 参考訳(メタデータ) (2020-12-17T13:30:45Z) - HydaLearn: Highly Dynamic Task Weighting for Multi-task Learning with
Auxiliary Tasks [4.095907708855597]
マルチタスク学習(MTL)は、1つ以上の関連する補助タスクと表現を共有することでタスクのパフォーマンスを向上させることができる。
通常、MTL-networksは、個別のタスク損失の一定の重み付けによる複合損失関数に基づいて訓練される。
実際には, 一定損失重みは, (i) ミニバッチに基づく最適化において, 最適タスク重みは, ミニバッチのサンプル組成に応じて, 更新から次へと大きく変化する。
メインタスクのゲインを個別のタスク勾配に結びつけるインテリジェントな重み付けアルゴリズムであるHydaLearnを導入して,その情報を伝達する。
論文 参考訳(メタデータ) (2020-08-26T16:04:02Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
マルチタスク学習は、複数のタスク間で構造を共有するための有望なアプローチとして登場した。
マルチタスク学習がシングルタスク学習と比較して難しい理由は、完全には理解されていない。
本稿では,他の作業の勾配の正規平面上にタスクの勾配を投影する勾配手術の一形態を提案する。
論文 参考訳(メタデータ) (2020-01-19T06:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。