論文の概要: Cost-sensitive Hierarchical Clustering for Dynamic Classifier Selection
- arxiv url: http://arxiv.org/abs/2012.09608v2
- Date: Fri, 18 Dec 2020 16:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 19:44:11.341714
- Title: Cost-sensitive Hierarchical Clustering for Dynamic Classifier Selection
- Title(参考訳): 動的分類器選択のためのコスト感受性階層クラスタリング
- Authors: Meinolf Sellmann and Tapan Shah
- Abstract要約: コストに敏感な階層的クラスタリングと呼ばれる汎用アルゴリズム選択法が動的分類器選択に適しているか検討する。
実験の結果,修正cshcアルゴリズムは好適に比較できた。
- 参考スコア(独自算出の注目度): 3.42658286826597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the dynamic classifier selection (DCS) problem: Given an ensemble
of classifiers, we are to choose which classifier to use depending on the
particular input vector that we get to classify. The problem is a special case
of the general algorithm selection problem where we have multiple different
algorithms we can employ to process a given input. We investigate if a method
developed for general algorithm selection named cost-sensitive hierarchical
clustering (CSHC) is suited for DCS. We introduce some additions to the
original CSHC method for the special case of choosing a classification
algorithm and evaluate their impact on performance. We then compare with a
number of state-of-the-art dynamic classifier selection methods. Our
experimental results show that our modified CSHC algorithm compares favorably
- Abstract(参考訳): 動的分類器選択(DCS)問題を考える: 分類器の集合が与えられた場合、分類する特定の入力ベクトルに応じてどの分類器を使うかを選択する。
この問題は、与えられた入力を処理するために使用できる複数の異なるアルゴリズムがある一般アルゴリズム選択問題の特別な場合である。
コストセンシティブな階層クラスタリング(CSHC)というアルゴリズム選択のための手法がDCSに適しているかを検討する。
分類アルゴリズムの選択に際し, CSHC法にいくつかの追加を加え, 性能への影響を評価する。
そして、いくつかの最先端動的分類器選択法と比較する。
実験の結果,修正cshcアルゴリズムは好ましく比較できることがわかった。
関連論文リスト
- MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
NCCは、ドメイン間数ショットの分類において、少数ショットの分類が可能なメートル法空間を構築するために表現を学ぶことを目的としている。
本稿では,異なるクラスから得られた2つの標本の NCC 学習表現に高い類似性があることを見出した。
ラベル付きデータによって示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、最適化されたカーネル依存(MOKD)を最大化する二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T05:59:52Z) - Outlier detection using flexible categorisation and interrogative
agendas [42.321011564731585]
与えられたオブジェクトの集合を分類する方法は、それらを分類するのに使用される機能の集合の選択に依存する。
まず,異なるアジェンダから生じる分類を用いて,外乱検出のための単純な教師なしFCAベースのアルゴリズムを開発する。
次に、重みや質量の異なる特徴の集合として分類する適切なアジェンダを学習するための教師付きメタ学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-19T10:05:09Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Clustering-Based Subset Selection in Evolutionary Multiobjective
Optimization [11.110675371854988]
サブセット選択は進化的多目的最適化(EMO)アルゴリズムにおいて重要な要素である。
クラスタリングに基づく手法は、EMOアルゴリズムによって得られた解集合からの部分集合選択の文脈では評価されていない。
論文 参考訳(メタデータ) (2021-08-19T02:56:41Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Supervised Enhanced Soft Subspace Clustering (SESSC) for TSK Fuzzy
Classifiers [25.32478253796209]
ファジィc平均クラスタリングアルゴリズムは,高木・スゲノカン(TSK)ファジィ分類器パラメータ推定によく用いられる。
本稿では,クラスタ内コンパクト性,クラスタ間分離,クラスタリングにおけるラベル情報とを同時に考慮した拡張ソフトサブスペースクラスタリング(SESSC)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-27T19:39:19Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
本稿では,二元的ユーザフィードバックから一組のアイテムをクラスタリングする問題について検討する。
最小クラスタ回復誤差率のアルゴリズムを考案する。
適応選択のために,情報理論的誤差下界の導出にインスパイアされたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2019-10-14T09:18:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。