論文の概要: MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence
- arxiv url: http://arxiv.org/abs/2405.18786v1
- Date: Wed, 29 May 2024 05:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:38:40.073283
- Title: MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence
- Title(参考訳): MOKD:最適化カーネル依存性の最大化によるFew-shot分類のためのクロスドメインファインタニング
- Authors: Hongduan Tian, Feng Liu, Tongliang Liu, Bo Du, Yiu-ming Cheung, Bo Han,
- Abstract要約: NCCは、ドメイン間数ショットの分類において、少数ショットの分類が可能なメートル法空間を構築するために表現を学ぶことを目的としている。
本稿では,異なるクラスから得られた2つの標本の NCC 学習表現に高い類似性があることを見出した。
ラベル付きデータによって示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、最適化されたカーネル依存(MOKD)を最大化する二段階最適化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 97.93517982908007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cross-domain few-shot classification, \emph{nearest centroid classifier} (NCC) aims to learn representations to construct a metric space where few-shot classification can be performed by measuring the similarities between samples and the prototype of each class. An intuition behind NCC is that each sample is pulled closer to the class centroid it belongs to while pushed away from those of other classes. However, in this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes. In order to address this problem, we propose a bi-level optimization framework, \emph{maximizing optimized kernel dependence} (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data of the given task. Specifically, MOKD first optimizes the kernel adopted in \emph{Hilbert-Schmidt independence criterion} (HSIC) to obtain the optimized kernel HSIC (opt-HSIC) that can capture the dependence more precisely. Then, an optimization problem regarding the opt-HSIC is addressed to simultaneously maximize the dependence between representations and labels and minimize the dependence among all samples. Extensive experiments on Meta-Dataset demonstrate that MOKD can not only achieve better generalization performance on unseen domains in most cases but also learn better data representation clusters. The project repository of MOKD is available at: \href{https://github.com/tmlr-group/MOKD}{https://github.com/tmlr-group/MOKD}.
- Abstract(参考訳): クロスドメインな小ショット分類において、 'emph{nearest centroid classifier} (NCC) は、サンプルと各クラスのプロトタイプの類似性を測定することで、少数ショット分類を行うことができる計量空間を構築するために表現を学ぶことを目的としている。
NCCの背後にある直感は、各サンプルは他のクラスのサンプルから押し離されながら、その標本が属するクラスセントロイドに近づくことである。
しかし,本論文では,異なるクラスからの2つのサンプルの NCC 学習表現に高い類似性があることが判明した。
この問題に対処するために、与えられたタスクのラベル付きデータで示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、二段階最適化フレームワークである 'emph{maximizing Optimization kernel dependency} (MOKD) を提案する。
特に、MOKDは最初に \emph{Hilbert-Schmidt Independence criterion} (HSIC) で採用されているカーネルを最適化し、より正確に依存を捉えることができる最適化されたカーネルHSIC (opt-HSIC) を得る。
次に、オプトHSICに関する最適化問題に対処し、表現とラベル間の依存を同時に最大化し、全てのサンプル間の依存を最小限に抑える。
Meta-Datasetに関する大規模な実験により、MOKDは、ほとんどの場合、目に見えないドメインでのより優れた一般化性能を達成できるだけでなく、より良いデータ表現クラスタを学習できることが示されている。
MOKDのプロジェクトリポジトリは以下の通りである。 \href{https://github.com/tmlr-group/MOKD}{https://github.com/tmlr-group/MOKD}。
関連論文リスト
- OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS)は、事前に定義されたラベルに頼ることなく、イメージをセグメント化する。
上記の問題を同時に解決するために,OMH (Optimally Matched Hierarchy) という新しいアプローチを導入する。
我々のOMHは既存のUSS法と比較して教師なしセグメンテーション性能がよい。
論文 参考訳(メタデータ) (2024-03-11T09:46:41Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
マルチカーネルクラスタリング(MKC)は、ベースカーネルの集合から最適な情報融合を実現するためにコミットされる。
本稿では,新しい局所サンプル重み付きマルチカーネルクラスタリングモデルを提案する。
実験により, LSWMKCはより優れた局所多様体表現を有し, 既存のカーネルやグラフベースのクラスタリングアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-05T05:00:38Z) - Cluster Representatives Selection in Non-Metric Spaces for Nearest
Prototype Classification [4.176752121302988]
本稿では,オブジェクトの小さいが代表的なサブセットをクラスタのプロトタイプとして選択する新しい手法であるCRSを提案する。
NN-Descentアルゴリズムにより生成された各クラスタの類似度グラフ表現を活用することにより、代表者のメモリと計算効率のよい選択が可能となる。
CRSはグラフベースのアプローチのため、任意の計量空間や非計量空間で使用することができる。
論文 参考訳(メタデータ) (2021-07-03T04:51:07Z) - K-Net: Towards Unified Image Segmentation [78.32096542571257]
K-Netと名付けられたこのフレームワークは、学習可能なカーネルのグループによってインスタンスとセマンティックカテゴリの両方を一貫して分割する。
K-Netは双方向マッチングでエンドツーエンドでトレーニングすることができ、そのトレーニングと推論は自然にNMSフリーで、ボックスフリーである。
論文 参考訳(メタデータ) (2021-06-28T17:18:21Z) - Improving k-Means Clustering Performance with Disentangled Internal
Representations [0.0]
本稿では,オートエンコーダの学習遅延符号表現の絡み合いを最適化する,シンプルなアプローチを提案する。
提案手法を用いて,MNISTデータセットでは96.2%,Fashion-MNISTデータセットでは85.6%,EMNIST Balancedデータセットでは79.2%,ベースラインモデルでは79.2%であった。
論文 参考訳(メタデータ) (2020-06-05T11:32:34Z) - Supervised Enhanced Soft Subspace Clustering (SESSC) for TSK Fuzzy
Classifiers [25.32478253796209]
ファジィc平均クラスタリングアルゴリズムは,高木・スゲノカン(TSK)ファジィ分類器パラメータ推定によく用いられる。
本稿では,クラスタ内コンパクト性,クラスタ間分離,クラスタリングにおけるラベル情報とを同時に考慮した拡張ソフトサブスペースクラスタリング(SESSC)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-27T19:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。