論文の概要: Interpretable Image Clustering via Diffeomorphism-Aware K-Means
- arxiv url: http://arxiv.org/abs/2012.09743v1
- Date: Wed, 16 Dec 2020 16:11:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 10:35:02.800791
- Title: Interpretable Image Clustering via Diffeomorphism-Aware K-Means
- Title(参考訳): Diffeomorphism-Aware K-Meansによる解釈可能な画像クラスタリング
- Authors: Romain Cosentino, Randall Balestriero, Yanis Bahroun, Anirvan
Sengupta, Richard Baraniuk, Behnaam Aazhang
- Abstract要約: 一般の変形のクラスを含む画像とセントロイドの類似性の尺度:微分同相性(diffeomorphisms)を開発する。
提案手法は, 各種データセットの最先端手法と競合することを示す。
- 参考スコア(独自算出の注目度): 20.747301413801843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We design an interpretable clustering algorithm aware of the nonlinear
structure of image manifolds. Our approach leverages the interpretability of
$K$-means applied in the image space while addressing its clustering
performance issues. Specifically, we develop a measure of similarity between
images and centroids that encompasses a general class of deformations:
diffeomorphisms, rendering the clustering invariant to them. Our work leverages
the Thin-Plate Spline interpolation technique to efficiently learn
diffeomorphisms best characterizing the image manifolds. Extensive numerical
simulations show that our approach competes with state-of-the-art methods on
various datasets.
- Abstract(参考訳): 画像多様体の非線形構造を考慮した解釈可能なクラスタリングアルゴリズムを設計する。
画像空間に適用した$k$-meansの解釈可能性を利用し,クラスタリング性能の問題に対処した。
具体的には,変形の一般的なクラスである微分同相写像(diffeomorphisms)を包含する画像とセントロイドの類似性の尺度を開発し,それらのクラスタリングを不変にする。
本研究は, 薄板スプライン補間法を応用し, 画像多様体を最もよく特徴づける微分同相写像を効率的に学習する。
大規模な数値シミュレーションにより,本手法は各種データセットの最先端手法と競合することが示された。
関連論文リスト
- Dual Advancement of Representation Learning and Clustering for Sparse and Noisy Images [14.836487514037994]
SNI(Sparse and Noisy Image)は、効果的な表現学習とクラスタリングに重要な課題を提起する。
本稿では、マスク画像モデリングから得られた表現を強化するために、DARLC(Dual Advancement of Representation Learning and Clustering)を提案する。
我々のフレームワークは、局所的な認識性、特異性、関係意味論の理解を高めることによって、表現の学習を改善する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-09-03T10:52:27Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Self-supervised Contrastive Learning for Cross-domain Hyperspectral
Image Representation [26.610588734000316]
本稿では,アノテートが本質的に困難であるハイパースペクトル画像に適した自己教師型学習フレームワークを提案する。
提案するフレームワークアーキテクチャは、クロスドメインCNNを利用して、異なるハイパースペクトル画像から表現を学習する。
実験結果は、スクラッチや他の移動学習法から学習したモデルに対して、提案した自己教師型表現の利点を示す。
論文 参考訳(メタデータ) (2022-02-08T16:16:45Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Multi-Facet Clustering Variational Autoencoders [9.150555507030083]
画像などの高次元データは通常、クラスタリング可能な複数の興味深い特徴を特徴付ける。
MFCVAE(Multi-Facet Clustering Variational Autoencoders)を導入する。
MFCVAEは複数のクラスタリングを同時に学習し、完全に教師なしでエンドツーエンドで訓練されている。
論文 参考訳(メタデータ) (2021-06-09T17:36:38Z) - Scattering Transform Based Image Clustering using Projection onto
Orthogonal Complement [2.0305676256390934]
本稿では,画像クラスタリングのための最先端,安定,高速なアルゴリズムであるProjected-Scattering Spectral Clustering (PSSC)を紹介する。
PSSCは、小さな画像の散乱変換の幾何学的構造を利用する新しい方法を含む。
実験の結果,PSSCは全ての浅層クラスタリングアルゴリズムの中で最良の結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-11-23T17:59:03Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
本研究では,空気シーン分類におけるニュアンス変動を解決するために,新しい不変な深部圧縮性共分散プール (IDCCP) を提案する。
本研究では,公開空間画像データセットに関する広範な実験を行い,最先端の手法と比較して,この手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-11-11T11:13:07Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z) - Deep Transformation-Invariant Clustering [24.23117820167443]
抽象的な特徴に頼らず、画像変換の予測を学ぶアプローチを提案する。
この学習プロセスは、K平均とガウス混合モデルの勾配に基づく訓練に自然に適合する。
我々の新しいアプローチは、標準的な画像クラスタリングベンチマークにおいて、競争力があり、非常に有望な結果をもたらすことを実証する。
論文 参考訳(メタデータ) (2020-06-19T13:43:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。