論文の概要: Multi-View Clustering via Semi-non-negative Tensor Factorization
- arxiv url: http://arxiv.org/abs/2303.16748v1
- Date: Wed, 29 Mar 2023 14:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 14:20:36.764656
- Title: Multi-View Clustering via Semi-non-negative Tensor Factorization
- Title(参考訳): 半負のテンソル因子分解によるマルチビュークラスタリング
- Authors: Jing Li, Quanxue Gao, Qianqian Wang, Wei Xia, Xinbo Gao
- Abstract要約: 半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
- 参考スコア(独自算出の注目度): 120.87318230985653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view clustering (MVC) based on non-negative matrix factorization (NMF)
and its variants have received a huge amount of attention in recent years due
to their advantages in clustering interpretability. However, existing NMF-based
multi-view clustering methods perform NMF on each view data respectively and
ignore the impact of between-view. Thus, they can't well exploit the
within-view spatial structure and between-view complementary information. To
resolve this issue, we present semi-non-negative tensor factorization
(Semi-NTF) and develop a novel multi-view clustering based on Semi-NTF with
one-side orthogonal constraint. Our model directly performs Semi-NTF on the
3rd-order tensor which is composed of anchor graphs of views. Thus, our model
directly considers the between-view relationship. Moreover, we use the tensor
Schatten p-norm regularization as a rank approximation of the 3rd-order tensor
which characterizes the cluster structure of multi-view data and exploits the
between-view complementary information. In addition, we provide an optimization
algorithm for the proposed method and prove mathematically that the algorithm
always converges to the stationary KKT point. Extensive experiments on various
benchmark datasets indicate that our proposed method is able to achieve
satisfactory clustering performance.
- Abstract(参考訳): 非負の行列因数分解(NMF)に基づくマルチビュークラスタリング(MVC)とその変種は、クラスタリングの解釈可能性の優位性から近年大きな注目を集めている。
しかし、既存のNMFベースのマルチビュークラスタリング手法は、それぞれのビューデータに対してそれぞれNMFを実行し、ビュー間の影響を無視する。
したがって、ビュー内空間構造とビュー間補完情報をうまく活用することはできない。
この問題を解決するために,半非負のテンソル因子分解(Semi-NTF)を提案し,一方の直交制約を持つSemi-NTFに基づく新しいマルチビュークラスタリングを開発する。
我々のモデルは、ビューのアンカーグラフからなる3階テンソル上でSemi-NTFを直接実行する。
したがって、このモデルは視点間の関係を直接考慮する。
さらに,マルチビューデータのクラスター構造を特徴付ける3次テンソルのランク近似としてテンソルシャッテンpノルム正則化を用い,ビュー間補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
ベンチマークデータセットの広範囲な実験は,提案手法がクラスタ化性能を満足できることを示す。
関連論文リスト
- Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
アンカーグラフの分解に基づくマルチビュークラスタリング法では,分解行列に対する適切なクラスタ解釈性が欠如している。
複数のビューからアンカーグラフを合成するアンカーグラフテンソルを分解するために、非負のテンソル因子分解を用いることにより、この制限に対処する。
論文 参考訳(メタデータ) (2024-04-01T03:23:55Z) - Adaptively Topological Tensor Network for Multi-view Subspace Clustering [36.790637575875635]
マルチビューサブスペースクラスタリングでは、学習した自己表現テンソルを使用して低ランク情報を利用する。
予め定義されたテンソル分解は、あるデータセットの低ランク情報を完全に活用できない。
自己表現テンソルの構造情報からエッジランクを決定することで適応的トポロジカルテンソルネットワーク(ATTN)を提案する。
論文 参考訳(メタデータ) (2023-05-01T08:28:33Z) - Hyper-Laplacian Regularized Concept Factorization in Low-rank Tensor
Space for Multi-view Clustering [0.0]
マルチビュークラスタリングのための低ランクテンソル空間における超ラプラシア正規化概念分解(HLRCF)を提案する。
具体的には、各ビューの潜在クラスタ単位の表現を探索するために、概念因子化を採用します。
異なるテンソル特異値が構造情報と不等値とを関連付けることを考慮し、自己重み付きテンソルSchatten p-ノルムを開発する。
論文 参考訳(メタデータ) (2023-04-22T15:46:58Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Tensor-based Intrinsic Subspace Representation Learning for Multi-view
Clustering [18.0093330816895]
本稿では,マルチビュークラスタリングのための新規な固有部分空間表現(TISRL)を提案する。
異なる視点に含まれる特定の情報は、階級保存分解によって完全に調査されていることが分かる。
9つの一般的な実世界のマルチビューデータセットの実験結果は、TISRLの優位性を示している。
論文 参考訳(メタデータ) (2020-10-19T03:36:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。