論文の概要: Self-supervised Learning with Fully Convolutional Networks
- arxiv url: http://arxiv.org/abs/2012.10017v1
- Date: Fri, 18 Dec 2020 02:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 18:14:16.827314
- Title: Self-supervised Learning with Fully Convolutional Networks
- Title(参考訳): 完全畳み込みネットワークによる自己教師型学習
- Authors: Zhengeng Yang, Hongshan Yu, Yong He, Zhi-Hong Mao, Ajmal Mian
- Abstract要約: セマンティックセグメンテーションのためのラベルのないデータから表現を学習する問題に焦点を当てる。
2つのパッチベース手法に着想を得て,新しい自己教師付き学習フレームワークを開発した。
ベースラインモデルに対して5.8ポイント改善を達成しました。
- 参考スコア(独自算出の注目度): 24.660086792201263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep learning based methods have achieved great success in many
computer vision tasks, their performance relies on a large number of densely
annotated samples that are typically difficult to obtain. In this paper, we
focus on the problem of learning representation from unlabeled data for
semantic segmentation. Inspired by two patch-based methods, we develop a novel
self-supervised learning framework by formulating the Jigsaw Puzzle problem as
a patch-wise classification process and solving it with a fully convolutional
network. By learning to solve a Jigsaw Puzzle problem with 25 patches and
transferring the learned features to semantic segmentation task on Cityscapes
dataset, we achieve a 5.8 percentage point improvement over the baseline model
that initialized from random values. Moreover, experiments show that our
self-supervised learning method can be applied to different datasets and
models. In particular, we achieved competitive performance with the
state-of-the-art methods on the PASCAL VOC2012 dataset using significant fewer
training images.
- Abstract(参考訳): 深層学習に基づく手法は多くのコンピュータビジョンタスクで大きな成功を収めてきたが、その性能は典型的には入手が困難である大量の注釈付きサンプルに依存している。
本稿では,セマンティックセグメンテーションのためのラベルのないデータから表現を学習する問題に焦点を当てる。
2つのパッチベース手法に着想を得て,jigsawパズル問題をパッチワイズ分類プロセスとして定式化し,完全畳み込みネットワークを用いて解く,新しい自己教師付き学習フレームワークを開発した。
Jigsaw Puzzleを25のパッチで解決し、学習した機能をCityscapesデータセットのセマンティックセグメンテーションタスクに転送することで、ランダムな値から初期化したベースラインモデルよりも5.8ポイント改善できる。
さらに,本研究の自己教師型学習手法が,異なるデータセットやモデルに適用可能であることを示す。
特に,PASCAL VOC2012データセットの最先端手法との競合性能は,少ないトレーニング画像を用いて達成した。
関連論文リスト
- Limits of Transformer Language Models on Learning to Compose Algorithms [77.2443883991608]
我々は,LLaMAモデルのトレーニングと,複数の個別サブタスクの合成学習を必要とする4つのタスクにおけるGPT-4とGeminiの促進について検討した。
その結果,現在最先端のTransformer言語モデルにおける構成学習は,非常に非効率なサンプルであることが示唆された。
論文 参考訳(メタデータ) (2024-02-08T16:23:29Z) - DiverseNet: Decision Diversified Semi-supervised Semantic Segmentation Networks for Remote Sensing Imagery [17.690698736544626]
トレーニング中の精度と多様性を同時に向上し,マルチヘッド・マルチモデル半教師付き学習アルゴリズムを探索するDiverseNetを提案する。
DiverseNetファミリーで提案されている2つの手法、すなわちDiverseHeadとDiverseModelは、広く利用されている4つのリモートセンシング画像データセットにおいて、セマンティックセマンティックセマンティクスの性能を向上させる。
論文 参考訳(メタデータ) (2023-11-22T22:20:10Z) - Dynamic Task and Weight Prioritization Curriculum Learning for
Multimodal Imagery [0.5439020425819]
本稿では,カリキュラム学習法を訓練したマルチモーダル深層学習モデルを用いたディザスタ後の分析について検討する。
カリキュラム学習は、ますます複雑なデータに基づいてディープラーニングモデルを訓練することにより、人間の教育における進歩的な学習シーケンスをエミュレートする。
論文 参考訳(メタデータ) (2023-10-29T18:46:33Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
本稿では,各ミニバッチからサンプル関係を学習可能なディープニューラルネットワークを提案する。
BatchFormerは各ミニバッチのバッチ次元に適用され、トレーニング中のサンプル関係を暗黙的に探索する。
我々は10以上のデータセットに対して広範な実験を行い、提案手法は異なるデータ不足アプリケーションにおいて大幅な改善を実現する。
論文 参考訳(メタデータ) (2022-03-03T05:31:33Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
本稿では, 大規模無教師付きセマンティックセマンティックセグメンテーション (LUSS) の新たな課題を提案する。
ImageNetデータセットに基づいて、120万のトレーニング画像と40万の高品質なセマンティックセグメンテーションアノテーションを用いた画像Net-Sデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-06T15:02:11Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Learning Visual Representations for Transfer Learning by Suppressing
Texture [38.901410057407766]
自己教師付き学習では、低レベルのキューとしてのテクスチャは、ネットワークがより高いレベルの表現を学習することを防ぐショートカットを提供する。
本稿では,異方性拡散に基づく古典的手法を用いて,テクスチャを抑圧した画像を用いた強化訓練を提案する。
提案手法は,物体検出と画像分類における最先端の成果を実証的に示す。
論文 参考訳(メタデータ) (2020-11-03T18:27:03Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Puzzle-AE: Novelty Detection in Images through Solving Puzzles [8.999416735254586]
U-Netはこの目的のために有効であることが証明されているが、他のAEベースのフレームワークと同様の再構成エラーを使用することでトレーニングデータに過度に適合する。
この課題に基づいてU-Netをトレーニングすることは、過剰適合を防止し、ピクセルレベルの機能を超えた学習を容易にする効果的な治療法であることを示す。
本稿では,効率的な自動ショートカット除去法として,対向的ロバストトレーニングを提案する。
論文 参考訳(メタデータ) (2020-08-29T10:53:55Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。