論文の概要: Mention Extraction and Linking for SQL Query Generation
- arxiv url: http://arxiv.org/abs/2012.10074v1
- Date: Fri, 18 Dec 2020 06:51:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 02:43:04.209517
- Title: Mention Extraction and Linking for SQL Query Generation
- Title(参考訳): SQLクエリ生成のためのメンション抽出とリンク
- Authors: Jianqiang Ma, Zeyu Yan, Shuai Pang, Yang Zhang, Jianping Shen
- Abstract要約: wikiベンチマークでは、最先端のテキスト対テキストシステムは通常、スロットタイプごとにいくつかの専用モデルを構築することでスロット満載のアプローチを取る。
本論文では,質問文に現れる全てのスロット参照を統一抽出器が認識する,新たな抽出リンク手法を提案する。
提案手法は, 自動生成アノテーションを用いて学習し, Wikiベンチマークで第1位を達成している。
- 参考スコア(独自算出の注目度): 6.186311061181687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: On the WikiSQL benchmark, state-of-the-art text-to-SQL systems typically take
a slot-filling approach by building several dedicated models for each type of
slots. Such modularized systems are not only complex butalso of limited
capacity for capturing inter-dependencies among SQL clauses. To solve these
problems, this paper proposes a novel extraction-linking approach, where a
unified extractor recognizes all types of slot mentions appearing in the
question sentence before a linker maps the recognized columns to the table
schema to generate executable SQL queries. Trained with automatically generated
annotations, the proposed method achieves the first place on the WikiSQL
benchmark.
- Abstract(参考訳): WikiSQLベンチマークでは、最先端のテキストからSQLへのシステムは通常、スロットごとに複数の専用モデルを構築することでスロットを埋めるアプローチを取る。
このようなモジュール化されたシステムは複雑なだけでなく、SQL節間の依存性をキャプチャする能力も制限されている。
そこで本研究では,連結抽出器が質問文に現れるすべてのスロット参照を,リンカが認識した列をテーブルスキーマにマップして実行可能なsqlクエリを生成する前に認識する,新しい抽出リンク手法を提案する。
提案手法は,自動生成アノテーションを用いて学習し,WikiSQLベンチマークで第一位となる。
関連論文リスト
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL [15.824894030016187]
近年,テキスト・トゥ・コンテクスト・タスクにおいて,インコンテキスト・ラーニングに基づく手法が顕著な成功を収めている。
これらのモデルのパフォーマンスと、複雑なデータベーススキーマを持つデータセット上でのヒューマンパフォーマンスとの間には、依然として大きなギャップがあります。
本フレームワークでは,データベース内の列の選択にテーブルの要約を含むエンティティベースの手法を用い,それらの複雑な質問を分解するために,新たな目標条件分解手法を導入する。
論文 参考訳(メタデータ) (2024-08-15T04:57:55Z) - The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models [0.9149661171430259]
次世代の大規模言語モデル(LLM)を使用する場合のスキーマリンクを再検討する。
より新しいモデルでは,無関係なモデルが多数存在する場合でも,生成時に関連するスキーマ要素を利用することが可能であることが実証的に判明した。
文脈情報をフィルタリングする代わりに、拡張、選択、修正などのテクニックを強調し、テキストからBIRDパイプラインの精度を向上させるためにそれらを採用する。
論文 参考訳(メタデータ) (2024-08-14T17:59:04Z) - SQL-to-Schema Enhances Schema Linking in Text-to-SQL [15.6857201570992]
テキストから音声へのメソッドでは、不要なテーブルや列をフィルタリングする必要がある。
これまでのアプローチでは、テーブルや列のソートが問題との関連性に基づいて行われてきた。
提案手法は,2段階に分けて提案するスキーマリンク方式である。
論文 参考訳(メタデータ) (2024-05-15T12:22:48Z) - Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
複雑なsqlクエリのためのスキーマ対応マルチタスク学習フレームワーク(MT)を提案する。
具体的には、有効な質問スキーマリンクを識別するために、識別器モジュールを設計する。
デコーダ側では、テーブルと列の接続を記述するために、6種類の関係を定義します。
論文 参考訳(メタデータ) (2024-03-09T01:13:37Z) - Benchmarking and Improving Text-to-SQL Generation under Ambiguity [25.283118418288293]
我々はAmbiQTと呼ばれる新しいベンチマークを開発し、各テキストは語彙的および/または構造的あいまいさのために2つのもっともらしいSQLとして解釈できる。
提案するLogicalBeamは,計画ベースのテンプレート生成と制約付きインフィルを併用して,sql論理空間をナビゲートする新しい復号アルゴリズムである。
論文 参考訳(メタデータ) (2023-10-20T17:00:53Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
本稿では,ポアンカー距離測定に基づく探索手法を用いて,関係構造を抽出する枠組みを提案する。
スキーマリンクの一般的なルールベース手法と比較して,探索関係は意味的対応をしっかりと捉えることができることがわかった。
我々のフレームワークは3つのベンチマークで最先端のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-06-28T14:05:25Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
世界の知識は構造化データベースに保存されている。
クエリ言語は、複雑な推論を必要とする質問に答えるだけでなく、完全な説明可能性を提供することができる。
論文 参考訳(メタデータ) (2021-08-05T22:04:13Z) - Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic
Parsing [110.97778888305506]
BRIDGEは、フィールドのサブセットが質問に言及されたセル値で拡張されるタグ付きシーケンスの質問とDBスキーマを表します。
BRIDGEは、人気のクロスDBテキスト-リレーショナルベンチマークで最先端のパフォーマンスを達成しました。
本分析は,BRIDGEが望まれる相互依存を効果的に捕捉し,さらにテキストDB関連タスクに一般化する可能性を示唆している。
論文 参考訳(メタデータ) (2020-12-23T12:33:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。