論文の概要: Schema-Aware Multi-Task Learning for Complex Text-to-SQL
- arxiv url: http://arxiv.org/abs/2403.09706v1
- Date: Sat, 9 Mar 2024 01:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:56:27.287005
- Title: Schema-Aware Multi-Task Learning for Complex Text-to-SQL
- Title(参考訳): 複雑なテキストからSQLへのスキーマ対応マルチタスク学習
- Authors: Yangjun Wu, Han Wang,
- Abstract要約: 複雑なsqlクエリのためのスキーマ対応マルチタスク学習フレームワーク(MT)を提案する。
具体的には、有効な質問スキーマリンクを識別するために、識別器モジュールを設計する。
デコーダ側では、テーブルと列の接続を記述するために、6種類の関係を定義します。
- 参考スコア(独自算出の注目度): 4.913409359995421
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Conventional text-to-SQL parsers are not good at synthesizing complex SQL queries that involve multiple tables or columns, due to the challenges inherent in identifying the correct schema items and performing accurate alignment between question and schema items. To address the above issue, we present a schema-aware multi-task learning framework (named MTSQL) for complicated SQL queries. Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings, which explicitly instructs the encoder by distinctive linking relations to enhance the alignment quality. On the decoder side, we define 6-type relationships to describe the connections between tables and columns (e.g., WHERE_TC), and introduce an operator-centric triple extractor to recognize those associated schema items with the predefined relationship. Also, we establish a rule set of grammar constraints via the predicted triples to filter the proper SQL operators and schema items during the SQL generation. On Spider, a cross-domain challenging text-to-SQL benchmark, experimental results indicate that MTSQL is more effective than baselines, especially in extremely hard scenarios. Moreover, further analyses verify that our approach leads to promising improvements for complicated SQL queries.
- Abstract(参考訳): 従来のテキスト・トゥ・SQLパーサは、複数のテーブルや列を含む複雑なSQLクエリの合成が得意ではない。
上記の問題に対処するため、複雑なSQLクエリのためのスキーマ対応マルチタスク学習フレームワーク(MTSQL)を提案する。
具体的には、有効な質問スキーマリンクを識別するために、スキーマリンクディミネータモジュールを設計し、特徴的リンク関係によってエンコーダを明示的に指示し、アライメント品質を向上させる。
デコーダ側では、テーブルと列(例えば、WHERE_TC)間の接続を記述するための6種類の関係を定義し、事前に定義された関係で関連するスキーマ項目を認識する演算子中心のトリプル抽出器を導入する。
また、予測三重項による文法制約のルールセットを確立し、SQL生成中に適切なSQL演算子とスキーマ項目をフィルタリングする。
クロスドメインなテキスト-SQLベンチマークであるSpiderでは、実験結果からMTSQLがベースラインよりも効果的であることが示されている。
さらに、さらなる分析により、我々のアプローチが複雑なSQLクエリに対して有望な改善をもたらすことが確認される。
関連論文リスト
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models [0.9149661171430259]
次世代の大規模言語モデル(LLM)を使用する場合のスキーマリンクを再検討する。
より新しいモデルでは,無関係なモデルが多数存在する場合でも,生成時に関連するスキーマ要素を利用することが可能であることが実証的に判明した。
文脈情報をフィルタリングする代わりに、拡張、選択、修正などのテクニックを強調し、テキストからBIRDパイプラインの精度を向上させるためにそれらを採用する。
論文 参考訳(メタデータ) (2024-08-14T17:59:04Z) - SQL-to-Schema Enhances Schema Linking in Text-to-SQL [15.6857201570992]
テキストから音声へのメソッドでは、不要なテーブルや列をフィルタリングする必要がある。
これまでのアプローチでは、テーブルや列のソートが問題との関連性に基づいて行われてきた。
提案手法は,2段階に分けて提案するスキーマリンク方式である。
論文 参考訳(メタデータ) (2024-05-15T12:22:48Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to-は、自然言語の質問を構造化されたクエリ言語()に変換し、データベースから情報を取得するタスクである。
本稿では,テキスト・トゥ・テキストのための LLM ベースのフレームワークを提案する。
我々は,疑問骨格を抽出する非意味化機構を設計し,その構造的類似性に基づいて類似した例を検索する。
論文 参考訳(メタデータ) (2023-04-26T06:02:01Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema
Linking Graph [6.13728903057727]
新しいデータベースへの一般化性は、人間の発話を insql 文を解析することを目的とした Text-to- システムにとって極めて重要である。
本稿では,質問トークンとデータベーススキーマ間のセマンティックなスキーマリンクグラフを反復的に構築するIS ESLというフレームワークを提案する。
3つのベンチマークでの大規模な実験により、IS ESLはベースラインを一貫して上回り、さらなる調査ではその一般化可能性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-08-08T03:59:33Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
本稿では,ポアンカー距離測定に基づく探索手法を用いて,関係構造を抽出する枠組みを提案する。
スキーマリンクの一般的なルールベース手法と比較して,探索関係は意味的対応をしっかりと捉えることができることがわかった。
我々のフレームワークは3つのベンチマークで最先端のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-06-28T14:05:25Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - A Tale of Two Linkings: Dynamically Gating between Schema Linking and
Structural Linking for Text-to-SQL Parsing [25.81069211061945]
Text-to- semantic parsingでは、生成したsqlクエリの正しいエンティティを選択することは重要かつ困難である。
この課題に対処するための2つのリンクプロセス: 明示的なNLの言及をデータベースにリンクするスキーマリンクと、出力sqlのエンティティとデータベーススキーマの構造的関係をリンクする構造的リンク。
提案手法を2つのグラフニューラルネットワークに基づくセマンティクスとBERT表現と統合することにより,課題となるスパイダーデータセットのパース精度が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2020-09-30T17:32:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。