論文の概要: Small Business Classification By Name: Addressing Gender and Geographic
Origin Biases
- arxiv url: http://arxiv.org/abs/2012.10348v1
- Date: Fri, 18 Dec 2020 16:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 21:51:51.799083
- Title: Small Business Classification By Name: Addressing Gender and Geographic
Origin Biases
- Title(参考訳): 小企業名別分類:性別・地理的起源バイアスへの対応
- Authors: Daniel Shapiro
- Abstract要約: 小さなビジネスネームのトレーニングは、性別と地理的起源のバイアスをもたらします。
ビジネス名のみに基づく66のビジネスタイプのひとつを予測するモデルを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Small business classification is a difficult and important task within many
applications, including customer segmentation. Training on small business names
introduces gender and geographic origin biases. A model for predicting one of
66 business types based only upon the business name was developed in this work
(top-1 f1-score = 60.2%). Two approaches to removing the bias from this model
are explored: replacing given names with a placeholder token, and augmenting
the training data with gender-swapped examples. The results for these
approaches is reported, and the bias in the model was reduced by hiding given
names from the model. However, bias reduction was accomplished at the expense
of classification performance (top-1 f1-score = 56.6%). Augmentation of the
training data with gender-swapping samples proved less effective at bias
reduction than the name hiding approach on the evaluated dataset.
- Abstract(参考訳): 小さなビジネス分類は、顧客セグメンテーションを含む多くのアプリケーションにおいて困難で重要なタスクである。
小さなビジネス名のトレーニングは、性別と地理的起源バイアスを導入します。
本研究で、ビジネス名のみに基づく66のビジネスタイプのうちの1つを予測するモデルを開発した(top-1 f1-score = 60.2%)。
このモデルからバイアスを取り除くための2つのアプローチが検討されている: 与えられた名前をプレースホルダトークンで置き換える。
これらのアプローチの結果を報告し、モデルから与えられた名前を隠すことでモデルのバイアスを減らした。
しかし、バイアス低減は分類性能を犠牲にして達成された(top-1 f1-score = 56.6%)。
性別変化サンプルを用いたトレーニングデータの強化は,評価データセットにおける名前隠れアプローチよりもバイアス低減効果が低かった。
関連論文リスト
- Gender Bias Mitigation for Bangla Classification Tasks [2.6285986998314783]
バングラ語事前学習言語モデルにおける性別バイアスについて検討する。
名前と性別固有の用語を変更することで、これらのデータセットが性別バイアスを検出し緩和するのに適していることを確認した。
論文 参考訳(メタデータ) (2024-11-16T00:04:45Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Identifying and examining machine learning biases on Adult dataset [0.7856362837294112]
この研究は、エンサンブルラーニングによる機械学習モデルバイアスの低減を念頭に置いている。
我々の厳密な方法論は、様々なカテゴリー変数にまたがる偏見を包括的に評価し、最終的に顕著な男女属性偏見を明らかにします。
本研究は,データ駆動型社会における倫理的考察とハイブリッドモデルの実現を提唱する。
論文 参考訳(メタデータ) (2023-10-13T19:41:47Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - Language Models Get a Gender Makeover: Mitigating Gender Bias with
Few-Shot Data Interventions [50.67412723291881]
事前訓練された大きな言語モデルに存在する社会的バイアスが重要な問題である。
我々は,事前学習モデルにおける性別バイアスを低減するために,データ介入戦略を強力かつ簡単な手法として提案する。
論文 参考訳(メタデータ) (2023-06-07T16:50:03Z) - Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases [62.54519787811138]
本稿では,突発的手がかりに依存したモデルバイアスを簡易かつ効果的に測定・緩和する手法を提案する。
我々は,解釈可能なネットワークの深部神経的特徴をベースとして,それらのクラス内の画像のランク付けを行う。
以上の結果から,素早い特徴依存によるモデルバイアスは,モデルがどのようにトレーニングされたかよりも,モデルがトレーニングされていることの影響がはるかに大きいことが示唆された。
論文 参考訳(メタデータ) (2022-12-05T23:15:43Z) - Exploring Gender Bias in Retrieval Models [2.594412743115663]
情報検索におけるジェンダーバイアスの緩和は,ステレオタイプの普及を避けるために重要である。
本研究では,(1)クエリに対するドキュメントの関連性,(2)ドキュメントの“ジェンダー”という2つのコンポーネントからなるデータセットを用いる。
我々は,大容量のBERTエンコーダの完全微調整を行う場合,IRの事前学習モデルはゼロショット検索タスクではうまく動作しないことを示す。
また、事前学習されたモデルには性別バイアスがあり、検索された記事は女性よりも男性が多い傾向にあることを示した。
論文 参考訳(メタデータ) (2022-08-02T21:12:05Z) - Improving Gender Fairness of Pre-Trained Language Models without
Catastrophic Forgetting [88.83117372793737]
元のトレーニングデータに情報を埋め込むことは、モデルの下流のパフォーマンスを大きなマージンで損なう可能性がある。
本稿では,GEnder Equality Prompt(GEEP)を提案する。
論文 参考訳(メタデータ) (2021-10-11T15:52:16Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。