論文の概要: Identifying and examining machine learning biases on Adult dataset
- arxiv url: http://arxiv.org/abs/2310.09373v1
- Date: Fri, 13 Oct 2023 19:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 20:42:42.575355
- Title: Identifying and examining machine learning biases on Adult dataset
- Title(参考訳): 成人データセットにおける機械学習バイアスの同定と検証
- Authors: Sahil Girhepuje
- Abstract要約: この研究は、エンサンブルラーニングによる機械学習モデルバイアスの低減を念頭に置いている。
我々の厳密な方法論は、様々なカテゴリー変数にまたがる偏見を包括的に評価し、最終的に顕著な男女属性偏見を明らかにします。
本研究は,データ駆動型社会における倫理的考察とハイブリッドモデルの実現を提唱する。
- 参考スコア(独自算出の注目度): 0.7856362837294112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research delves into the reduction of machine learning model bias
through Ensemble Learning. Our rigorous methodology comprehensively assesses
bias across various categorical variables, ultimately revealing a pronounced
gender attribute bias. The empirical evidence unveils a substantial
gender-based wage prediction disparity: wages predicted for males, initially at
\$902.91, significantly decrease to \$774.31 when the gender attribute is
alternated to females. Notably, Kullback-Leibler divergence scores point to
gender bias, with values exceeding 0.13, predominantly within tree-based
models. Employing Ensemble Learning elucidates the quest for fairness and
transparency. Intriguingly, our findings reveal that the stacked model aligns
with individual models, confirming the resilience of model bias. This study
underscores ethical considerations and advocates the implementation of hybrid
models for a data-driven society marked by impartiality and inclusivity.
- Abstract(参考訳): 本研究は,アンサンブル学習による機械学習モデルバイアスの低減に寄与する。
我々の厳密な方法論は、様々なカテゴリー変数にまたがる偏見を包括的に評価し、最終的に顕著な男女属性偏見を明らかにする。
実証的な証拠は、性別に基づく賃金の差がかなり大きいことを示している: 男性向けの賃金は、当初902.91ドルと予測され、性別属性が女性に交互に変わると、わずかに774.31ドルに減少する。
特に、kullback-leibler divergenceスコアは、主に木に基づくモデルにおいて、0.13を超える性バイアスを示している。
アンサンブル学習は公平さと透明性の探求を解明する。
興味深いことに, 重ねられたモデルが個々のモデルと整合し, モデルバイアスの弾力性が確認された。
本研究は,データ駆動型社会における倫理的考察と,不公平性と傾向を特徴とするハイブリッドモデルの実現を提唱する。
関連論文リスト
- Dataset Distribution Impacts Model Fairness: Single vs. Multi-Task Learning [2.9530211066840417]
ResNetベースのCNNを用いて皮膚病変分類の性能を評価する。
患者性やクラスラベルの異なるデータセットを生成するための線形プログラミング手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T15:23:26Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - AI Gender Bias, Disparities, and Fairness: Does Training Data Matter? [3.509963616428399]
この研究は、人工知能(AI)におけるジェンダー問題に関する広範囲にわたる課題について考察する。
それは、6つの評価項目で男女1000人以上の学生の反応を分析する。
その結果,混合学習モデルのスコアリング精度は,男性モデルと女性モデルとでは有意な差があることが示唆された。
論文 参考訳(メタデータ) (2023-12-17T22:37:06Z) - Evaluating Bias and Fairness in Gender-Neutral Pretrained
Vision-and-Language Models [23.65626682262062]
我々は,3種類の視覚・言語モデルを用いた事前学習および微調整後のバイアス増幅の定量化を行う。
全体として、事前学習および微調整後のバイアス増幅は独立である。
論文 参考訳(メタデータ) (2023-10-26T16:19:19Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z) - Do Neural Ranking Models Intensify Gender Bias? [13.37092521347171]
まず、IRモデルのランキングリストにおいて、性別関連概念の非バランスの存在度を定量化するための2つの指標を含むバイアス測定フレームワークを提供する。
これらのクエリをMS MARCOパッセージ検索コレクションに適用し、BM25モデルと最近のニューラルランキングモデルの性別バイアスを測定する。
結果は、すべてのモデルが男性に対して強く偏りを呈する一方で、神経モデル、特に文脈化された埋め込みモデルに基づくモデルは、性バイアスを著しく強めていることを示している。
論文 参考訳(メタデータ) (2020-05-01T13:31:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。