Parity-Symmetry-Protected Bundle Emission
- URL: http://arxiv.org/abs/2012.10926v2
- Date: Tue, 17 Aug 2021 02:26:26 GMT
- Title: Parity-Symmetry-Protected Bundle Emission
- Authors: Qian Bin, Ying Wu, and Xin-You L\"u
- Abstract summary: We demonstrate symmetry protected bundle emission in the cavity QED system under the ultrastrong coupling regime.
This work extends multi-photon bundle emission to the ultrastrong coupling regime, and offers the prospect of exploring symmetry-protected multi-quanta physics.
- Score: 11.798151369038557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate symmetry protected bundle emission in the cavity QED system
under the ultrastrong coupling regime. Parity symmetry of Rabi model only
permits the super-Rabi oscillations with periodic generation of even photons in
cavity, which is realized by the laser driven flip of qubit and the parity
conserved transitions induced by Rabi interaction. Combined with dissipation,
only 2$n$-photon correlated emissions are allowed, and the corresponding
purities are significantly enhanced by the parity symmetry, due to the almost
perfect suppression of bundle emissions with odd correlated photons. The
switching of bundle emissions between even and odd correlated photons can be
controlled by manipulating the parity symmetry of system with an added magnetic
field. This work extends multi-photon bundle emission to the ultrastrong
coupling regime, and offers the prospect of exploring symmetry-protected
multi-quanta physics.
Related papers
- Single-photon scattering in giant-atom topological-waveguide-QED systems [1.2479554210753663]
We study single-photon scattering in a Su-Schrieffer-Heeger (SSH) waveguide coupled to either one or two two-level giant atoms.
We find that a single photon in the SSH waveguide can be completely reflected or transmitted by choosing proper coupling configurations.
This work will inspire the development of controllable single-photon devices based on the giant-atom topological-waveguide-QED systems.
arXiv Detail & Related papers (2024-08-26T10:57:23Z) - Quantum Beam Splitter as a Quantum Coherence Controller [2.7153390480938002]
We propose a quantum beam splitter (QBS) with tunable reflection and transmission coefficients.
For the interference of two weak coherent-state inputs, our QBS can produce anti-bunched photons from one output port and bunched photons from the other.
arXiv Detail & Related papers (2024-07-13T07:23:00Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Pure dephasing induced single-photon parametric down-conversion in an
ultrastrong coupled plasmon-exciton system [0.0]
In coupled quantum systems pure dephasing mechanisms acting on one constituent of the hybrid system break symmetry.
Fast pure dephasing of the exciton is shown to support photon pair generation as the dominant energy relaxation pathway.
arXiv Detail & Related papers (2022-07-25T16:03:18Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.