論文の概要: Biased Models Have Biased Explanations
- arxiv url: http://arxiv.org/abs/2012.10986v1
- Date: Sun, 20 Dec 2020 18:09:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 06:03:42.106917
- Title: Biased Models Have Biased Explanations
- Title(参考訳): バイアスドモデルにはバイアスドの説明がある
- Authors: Aditya Jain, Manish Ravula, Joydeep Ghosh
- Abstract要約: 機械学習モデルで生成された属性に基づく説明のレンズを通して、機械学習(FairML)の公平性を検討します。
まず、群フェアネスの既存の統計的概念を翻訳し、モデルから与えられた説明の観点からこれらの概念を定義する。
そこで本研究では,ブラックボックスモデルに対する新しい(不公平な)検出方法を提案する。
- 参考スコア(独自算出の注目度): 10.9397029555303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study fairness in Machine Learning (FairML) through the lens of
attribute-based explanations generated for machine learning models. Our
hypothesis is: Biased Models have Biased Explanations. To establish that, we
first translate existing statistical notions of group fairness and define these
notions in terms of explanations given by the model. Then, we propose a novel
way of detecting (un)fairness for any black box model. We further look at
post-processing techniques for fairness and reason how explanations can be used
to make a bias mitigation technique more individually fair. We also introduce a
novel post-processing mitigation technique which increases individual fairness
in recourse while maintaining group level fairness.
- Abstract(参考訳): 機械学習モデルで生成された属性に基づく説明のレンズを通して,機械学習(fairml)の公平性について検討する。
偏りのあるモデルにはバイアスのある説明があります。
それを確立するために、まず、群フェアネスの既存の統計的概念を翻訳し、モデルから与えられた説明の観点からこれらの概念を定義する。
そこで我々は,ブラックボックスモデルに対して不公平を検出する新しい方法を提案する。
公平性のための後処理技術や、バイアス緩和技術をより個々に公平にするための説明の活用方法についても検討する。
また,グループレベルの公平さを維持しつつ,個別の公正さを高める新しい処理後緩和手法を提案する。
関連論文リスト
- Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
テキスト・トゥ・イメージ(TTI)システムは、社会的偏見に対する精査が増加している。
組込み空間をTTIモデルのバイアス源として検討する。
CLIPのような偏りのあるマルチモーダル埋め込みは、表現バランスの取れたTTIモデルに対して低いアライメントスコアをもたらす。
論文 参考訳(メタデータ) (2024-09-15T01:09:55Z) - "Patriarchy Hurts Men Too." Does Your Model Agree? A Discussion on Fairness Assumptions [3.706222947143855]
グループフェアネスの文脈では、このアプローチはデータへのバイアスの導入方法に関する暗黙の仮定を曖昧にすることが多い。
我々は偏りの過程が公正スコアの単調関数であり、感度属性のみに依存すると仮定している。
偏見過程の振舞いは単なる単調性よりも複雑であり、つまり暗黙の仮定を特定し、否定する必要がある。
論文 参考訳(メタデータ) (2024-08-01T07:06:30Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Revealing Unfair Models by Mining Interpretable Evidence [50.48264727620845]
機械学習の人気は、不公平なモデルがハイリスクなアプリケーションにデプロイされるリスクを高めている。
本稿では,解釈可能な証拠をマイニングすることで不公平なモデルを明らかにする新しい課題に取り組む。
本手法は,訓練されたモデルの不公平性を効果的に明らかにするために,極めて解釈可能な確固たる証拠を見出す。
論文 参考訳(メタデータ) (2022-07-12T20:03:08Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Wasserstein-based fairness interpretability framework for machine
learning models [0.2519906683279153]
分類モデルと回帰モデルにおけるバイアスの測定と説明のための公正解釈可能性フレームワークを導入する。
We measure the model bias across the sub-population distributions in the model output using the Wasserstein metric。
非保護クラスに対するモデルと予測器の両方の優遇性を考慮に入れます。
論文 参考訳(メタデータ) (2020-11-06T02:01:29Z) - Explainability for fair machine learning [10.227479910430866]
本稿では,Shapley値のパラダイムに基づく機械学習における公平性を説明するための新しいアプローチを提案する。
我々の公正な説明は、モデルがセンシティブな属性を直接操作していない場合であっても、モデル全体の不公平さを個々の入力特徴に帰着する。
本稿では,既存のトレーニング時間フェアネス介入を適用したメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-14T20:21:01Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
現在、我々がモデルに提示するデータセットのバイアスのため、公正な公開トレーニングが不公平なモデルにつながることは受け入れられている。
そこで本研究では,モデルのトレーニング中に公平性を同時に課すメカニズムについて検討する。
論文 参考訳(メタデータ) (2020-04-03T03:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。