Subgrid BoostCNN: Efficient Boosting of Convolutional Networks via Gradient-Guided Feature Selection
- URL: http://arxiv.org/abs/2507.22842v1
- Date: Wed, 30 Jul 2025 17:00:05 GMT
- Title: Subgrid BoostCNN: Efficient Boosting of Convolutional Networks via Gradient-Guided Feature Selection
- Authors: Biyi Fang, Jean Utke, Truong Vo, Diego Klabjan,
- Abstract summary: We introduce a novel framework for boosting CNN performance that integrates dynamic feature selection with the principles of BoostCNN.<n>Our results show that our boosted CNN variants consistently outperform conventional CNNs in both predictive performance and training speed.
- Score: 11.246174442827282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) have achieved remarkable success across a wide range of machine learning tasks by leveraging hierarchical feature learning through deep architectures. However, the large number of layers and millions of parameters often make CNNs computationally expensive to train, requiring extensive time and manual tuning to discover optimal architectures. In this paper, we introduce a novel framework for boosting CNN performance that integrates dynamic feature selection with the principles of BoostCNN. Our approach incorporates two key strategies: subgrid selection and importance sampling, to guide training toward informative regions of the feature space. We further develop a family of algorithms that embed boosting weights directly into the network training process using a least squares loss formulation. This integration not only alleviates the burden of manual architecture design but also enhances accuracy and efficiency. Experimental results across several fine-grained classification benchmarks demonstrate that our boosted CNN variants consistently outperform conventional CNNs in both predictive performance and training speed.
Related papers
- Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - Speeding Up EfficientNet: Selecting Update Blocks of Convolutional
Neural Networks using Genetic Algorithm in Transfer Learning [0.0]
We devise a genetic algorithm to select blocks of layers for updating the parameters.
We show that our algorithm yields similar or better results than the baseline in terms of accuracy.
We also devise a metric called block importance to measure efficacy of each block as update block.
arXiv Detail & Related papers (2023-03-01T06:35:29Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Tricks and Plugins to GBM on Images and Sequences [18.939336393665553]
We propose a new algorithm for boosting Deep Convolutional Neural Networks (BoostCNN) to combine the merits of dynamic feature selection and BoostCNN.
We also propose a set of algorithms to incorporate boosting weights into a deep learning architecture based on a least squares objective function.
Experiments show that the proposed methods outperform benchmarks on several fine-grained classification tasks.
arXiv Detail & Related papers (2022-03-01T21:59:00Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
Recent advances in edge intelligence require CNN inference on edge network to increase throughput and reduce latency.
To provide flexibility, dynamic parameter allocation to different mobile devices is required to implement either a predefined or defined on-the-fly CNN architecture.
We propose a library-based approach to design scalable and dynamic distributed CNN inference on the fly.
arXiv Detail & Related papers (2022-02-18T22:33:42Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
We study the relationships between a CNN's architecture and its performance.
We show that the attributes can be predictive of the networks' performance in two specific computer vision-based physics problems.
We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training.
arXiv Detail & Related papers (2020-01-07T16:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.