Image edge enhancement for effective image classification
- URL: http://arxiv.org/abs/2401.07028v1
- Date: Sat, 13 Jan 2024 10:01:34 GMT
- Title: Image edge enhancement for effective image classification
- Authors: Tianhao Bu, Michalis Lazarou, Tania Stathaki
- Abstract summary: We propose an edge enhancement-based method to enhance both accuracy and training speed of neural networks.
Our approach involves extracting high frequency features, such as edges, from images within the available dataset and fusing them with the original images.
- Score: 7.470763273994321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image classification has been a popular task due to its feasibility in
real-world applications. Training neural networks by feeding them RGB images
has demonstrated success over it. Nevertheless, improving the classification
accuracy and computational efficiency of this process continues to present
challenges that researchers are actively addressing. A widely popular embraced
method to improve the classification performance of neural networks is to
incorporate data augmentations during the training process. Data augmentations
are simple transformations that create slightly modified versions of the
training data and can be very effective in training neural networks to mitigate
overfitting and improve their accuracy performance. In this study, we draw
inspiration from high-boost image filtering and propose an edge
enhancement-based method as means to enhance both accuracy and training speed
of neural networks. Specifically, our approach involves extracting high
frequency features, such as edges, from images within the available dataset and
fusing them with the original images, to generate new, enriched images. Our
comprehensive experiments, conducted on two distinct datasets CIFAR10 and
CALTECH101, and three different network architectures ResNet-18, LeNet-5 and
CNN-9 demonstrates the effectiveness of our proposed method.
Related papers
- Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification [0.0]
We first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data.
Then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data.
arXiv Detail & Related papers (2024-11-19T01:01:56Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Dynamic Test-Time Augmentation via Differentiable Functions [3.686808512438363]
DynTTA is an image enhancement method that generates recognition-friendly images without retraining the recognition model.
DynTTA is based on differentiable data augmentation techniques and generates a blended image from many augmented images to improve the recognition accuracy under distribution shifts.
arXiv Detail & Related papers (2022-12-09T06:06:47Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks.
In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples.
arXiv Detail & Related papers (2022-09-02T08:06:58Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
arXiv Detail & Related papers (2021-11-03T09:08:54Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - Learning degraded image classification with restoration data fidelity [0.0]
We investigate the influence of degradation types and levels on four widely-used classification networks.
We propose a novel method leveraging a fidelity map to calibrate the image features obtained by pre-trained networks.
Our results reveal that the proposed method is a promising solution to mitigate the effect caused by image degradation.
arXiv Detail & Related papers (2021-01-23T23:47:03Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
We propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix.
In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor.
Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly.
arXiv Detail & Related papers (2020-03-29T15:01:05Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.