論文の概要: Centralized Information Interaction for Salient Object Detection
- arxiv url: http://arxiv.org/abs/2012.11294v2
- Date: Thu, 24 Dec 2020 14:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:32:35.212289
- Title: Centralized Information Interaction for Salient Object Detection
- Title(参考訳): 突発的物体検出のための集中型情報インタラクション
- Authors: Jiang-Jiang Liu, Zhi-Ang Liu, Ming-Ming Cheng
- Abstract要約: U字型構造は、多スケールの機能を効率的に組み合わせるサリエント物体検出に長けている。
本稿では,これらの接続を集中化することにより,相互に相互に情報交換を行うことができることを示す。
本手法は, ボトムアップ経路とトップダウン経路の接続を置換することにより, 既存のU字型サルエント物体検出手法と協調することができる。
- 参考スコア(独自算出の注目度): 68.8587064889475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The U-shape structure has shown its advantage in salient object detection for
efficiently combining multi-scale features. However, most existing U-shape
based methods focused on improving the bottom-up and top-down pathways while
ignoring the connections between them. This paper shows that by centralizing
these connections, we can achieve the cross-scale information interaction among
them, hence obtaining semantically stronger and positionally more precise
features. To inspire the potential of the newly proposed strategy, we further
design a relative global calibration module that can simultaneously process
multi-scale inputs without spatial interpolation. Benefiting from the above
strategy and module, our proposed approach can aggregate features more
effectively while introducing only a few additional parameters. Our approach
can cooperate with various existing U-shape-based salient object detection
methods by substituting the connections between the bottom-up and top-down
pathways. Experimental results demonstrate that our proposed approach performs
favorably against the previous state-of-the-arts on five widely used benchmarks
with less computational complexity. The source code will be publicly available.
- Abstract(参考訳): U字形構造は、多スケール特徴を効率よく組み合わせるための有能な物体検出の利点を示している。
しかし、既存のu-shapeベースの手法の多くはボトムアップとトップダウンの経路の改善に重点を置いており、両者の接続を無視している。
本稿は,これらの接続を集中化することにより,相互に情報交換を行うことができ,セマンティックに強く,位置的により正確な特徴を得ることができることを示す。
提案手法の可能性を刺激するために,空間的補間を伴わずにマルチスケール入力を同時に処理できる相対的グローバルキャリブレーションモジュールを更に設計する。
上記の戦略とモジュールの利点を生かして、提案手法は、いくつかの追加パラメータを導入しながら、より効率的に機能を集約することができる。
本手法は, ボトムアップ経路とトップダウン経路の接続を置換することにより, 既存のU字型サルエント物体検出手法と協調することができる。
実験の結果,提案手法は,計算複雑性の低い5つのベンチマークにおいて,従来の最先端のベンチマークに対して良好に動作することが示された。
ソースコードは公開される予定だ。
関連論文リスト
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
ペアワイド類似性学習のためのモダリティ間の強力な関係を捕捉する汎用構造スパースを提案する。
距離メートル法は、対角線とブロック対角線の2つの形式を微妙にカプセル化する。
クロスモーダルと2つの余分なユニモーダル検索タスクの実験は、その優位性と柔軟性を検証した。
論文 参考訳(メタデータ) (2024-10-20T03:45:50Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
大域的特徴相互作用をモデル化するために、二重対向変換器の新たな特徴融合フレームワークを提案する。
このフレームワークは、クエリ誘導のクロスアテンション機構を通じて、オブジェクトの特徴の識別性を高める。
提案手法は,様々なシナリオに適した性能と高速な推論を実現する。
論文 参考訳(メタデータ) (2023-08-15T00:02:10Z) - Sparse Message Passing Network with Feature Integration for Online
Multiple Object Tracking [6.510588721127479]
これらの2つのコントリビューションを持つ単純なオンラインMPNは、多くの最先端手法よりも優れた性能を発揮することを示す実験結果が得られた。
相関法はよく一般化され,私的検出に基づく手法の結果も改善できる。
論文 参考訳(メタデータ) (2022-12-06T14:10:57Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
粗大な処理で対応性を見出すことにより、ECO-TR(Correspondence Efficient Transformer)と呼ばれる効率的な構造を提案する。
これを実現するために、複数の変圧器ブロックは段階的に連結され、予測された座標を徐々に洗練する。
種々のスパースタスクと密マッチングタスクの実験は、既存の最先端技術に対する効率性と有効性の両方において、我々の手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-09-25T13:05:33Z) - MPI: Multi-receptive and Parallel Integration for Salient Object
Detection [17.32228882721628]
深い特徴のセマンティック表現は、画像コンテキスト理解に不可欠である。
本稿では,MPIと呼ばれる新しい手法を提案する。
提案手法は,異なる評価基準下での最先端手法よりも優れる。
論文 参考訳(メタデータ) (2021-08-08T12:01:44Z) - BiconNet: An Edge-preserved Connectivity-based Approach for Salient
Object Detection [3.3517146652431378]
既存のSaliencyベースのSODフレームワークをバックボーンとして使用できることを示す。
5つのベンチマークデータセットの総合的な実験を通して,提案手法が最先端のSOD手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-02-27T21:39:04Z) - Recursive Multi-model Complementary Deep Fusion forRobust Salient Object
Detection via Parallel Sub Networks [62.26677215668959]
完全畳み込みネットワークは、正体検出(SOD)分野において優れた性能を示している。
本稿では,全く異なるネットワークアーキテクチャを持つ並列サブネットワークからなる,より広いネットワークアーキテクチャを提案する。
いくつかの有名なベンチマークの実験では、提案されたより広範なフレームワークの優れた性能、優れた一般化、強力な学習能力が明らかに示されている。
論文 参考訳(メタデータ) (2020-08-07T10:39:11Z) - Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints [80.60538408386016]
連続するフレームから相対的なカメラのポーズを推定することは、視覚計測の基本的な問題である。
本稿では,検出,特徴抽出,マッチング,外乱除去のための学習可能なモジュールで構成されるエンドツーエンドのトレーニング可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-29T21:41:31Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。