Monocular Depth Parameterizing Networks
- URL: http://arxiv.org/abs/2012.11301v1
- Date: Mon, 21 Dec 2020 13:02:41 GMT
- Title: Monocular Depth Parameterizing Networks
- Authors: Patrik Persson, Linn \"Ostr\"om, Carl Olsson
- Abstract summary: We propose a network structure that provides a parameterization of a set of depth maps with feasible shapes.
This allows us to search the shapes for a photo consistent solution with respect to other images.
Our experimental evaluation shows that our method generates more accurate depth maps and generalizes better than competing state-of-the-art approaches.
- Score: 15.791732557395552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular depth estimation is a highly challenging problem that is often
addressed with deep neural networks. While these are able to use recognition of
image features to predict reasonably looking depth maps the result often has
low metric accuracy. In contrast traditional stereo methods using multiple
cameras provide highly accurate estimation when pixel matching is possible. In
this work we propose to combine the two approaches leveraging their respective
strengths. For this purpose we propose a network structure that given an image
provides a parameterization of a set of depth maps with feasible shapes.
Optimizing over the parameterization then allows us to search the shapes for a
photo consistent solution with respect to other images. This allows us to
enforce geometric properties that are difficult to observe in single image as
well as relaxes the learning problem allowing us to use relatively small
networks. Our experimental evaluation shows that our method generates more
accurate depth maps and generalizes better than competing state-of-the-art
approaches.
Related papers
- Refinement of Monocular Depth Maps via Multi-View Differentiable Rendering [4.717325308876748]
We present a novel approach to generate view consistent and detailed depth maps from a number of posed images.
We leverage advances in monocular depth estimation, which generate topologically complete, but metrically inaccurate depth maps.
Our method is able to generate dense, detailed, high-quality depth maps, also in challenging indoor scenarios, and outperforms state-of-the-art depth reconstruction approaches.
arXiv Detail & Related papers (2024-10-04T18:50:28Z) - Understanding Depth Map Progressively: Adaptive Distance Interval
Separation for Monocular 3d Object Detection [38.96129204108353]
Several monocular 3D detection techniques rely on auxiliary depth maps from the depth estimation task.
We propose a framework named the Adaptive Distance Interval Separation Network (ADISN) that adopts a novel perspective on understanding depth maps.
arXiv Detail & Related papers (2023-06-19T13:32:53Z) - Boosting Monocular Depth Estimation Models to High-Resolution via
Content-Adaptive Multi-Resolution Merging [14.279471205248534]
We show how a consistent scene structure and high-frequency details affect depth estimation performance.
We present a double estimation method that improves the whole-image depth estimation and a patch selection method that adds local details.
We demonstrate that by merging estimations at different resolutions with changing context, we can generate multi-megapixel depth maps with a high level of detail.
arXiv Detail & Related papers (2021-05-28T17:55:15Z) - Towards Unpaired Depth Enhancement and Super-Resolution in the Wild [121.96527719530305]
State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes.
We consider an approach to depth map enhancement based on learning from unpaired data.
arXiv Detail & Related papers (2021-05-25T16:19:16Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
Two-view structure-from-motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM.
We propose to revisit the problem of deep two-view SfM by leveraging the well-posedness of the classic pipeline.
Our method consists of 1) an optical flow estimation network that predicts dense correspondences between two frames; 2) a normalized pose estimation module that computes relative camera poses from the 2D optical flow correspondences, and 3) a scale-invariant depth estimation network that leverages epipolar geometry to reduce the search space, refine the dense correspondences, and estimate relative depth maps.
arXiv Detail & Related papers (2021-04-01T15:31:20Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - Consistent Video Depth Estimation [57.712779457632024]
We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video.
We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video.
Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion.
arXiv Detail & Related papers (2020-04-30T17:59:26Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.