Towards Unpaired Depth Enhancement and Super-Resolution in the Wild
- URL: http://arxiv.org/abs/2105.12038v1
- Date: Tue, 25 May 2021 16:19:16 GMT
- Title: Towards Unpaired Depth Enhancement and Super-Resolution in the Wild
- Authors: Aleksandr Safin, Maxim Kan, Nikita Drobyshev, Oleg Voynov, Alexey
Artemov, Alexander Filippov, Denis Zorin, Evgeny Burnaev
- Abstract summary: State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes.
We consider an approach to depth map enhancement based on learning from unpaired data.
- Score: 121.96527719530305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth maps captured with commodity sensors are often of low quality and
resolution; these maps need to be enhanced to be used in many applications.
State-of-the-art data-driven methods of depth map super-resolution rely on
registered pairs of low- and high-resolution depth maps of the same scenes.
Acquisition of real-world paired data requires specialized setups. Another
alternative, generating low-resolution maps from high-resolution maps by
subsampling, adding noise and other artificial degradation methods, does not
fully capture the characteristics of real-world low-resolution images. As a
consequence, supervised learning methods trained on such artificial paired data
may not perform well on real-world low-resolution inputs. We consider an
approach to depth map enhancement based on learning from unpaired data. While
many techniques for unpaired image-to-image translation have been proposed,
most are not directly applicable to depth maps. We propose an unpaired learning
method for simultaneous depth enhancement and super-resolution, which is based
on a learnable degradation model and surface normal estimates as features to
produce more accurate depth maps. We demonstrate that our method outperforms
existing unpaired methods and performs on par with paired methods on a new
benchmark for unpaired learning that we developed.
Related papers
- Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
We propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN)
We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.
arXiv Detail & Related papers (2023-11-02T13:57:48Z) - Multi-resolution Monocular Depth Map Fusion by Self-supervised
Gradient-based Composition [14.246972408737987]
We propose a novel depth map fusion module to combine the advantages of estimations with multi-resolution inputs.
Our lightweight depth fusion is one-shot and runs in real-time, making our method 80X faster than a state-of-the-art depth fusion method.
arXiv Detail & Related papers (2022-12-03T05:13:50Z) - RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation [27.679479140943503]
We propose a resolution adaptive self-supervised monocular depth estimation method (RA-Depth) by learning the scale invariance of the scene depth.
RA-Depth achieves state-of-the-art performance, and also exhibits a good ability of resolution adaptation.
arXiv Detail & Related papers (2022-07-25T08:49:59Z) - PatchMVSNet: Patch-wise Unsupervised Multi-View Stereo for
Weakly-Textured Surface Reconstruction [2.9896482273918434]
This paper proposes robust loss functions leveraging constraints beneath multi-view images to alleviate matching ambiguity.
Our strategy can be implemented with arbitrary depth estimation frameworks and can be trained with arbitrary large-scale MVS datasets.
Our method reaches the performance of the state-of-the-art methods on popular benchmarks, like DTU, Tanks and Temples and ETH3D.
arXiv Detail & Related papers (2022-03-04T07:05:23Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - Learning Topology from Synthetic Data for Unsupervised Depth Completion [66.26787962258346]
We present a method for inferring dense depth maps from images and sparse depth measurements.
We learn the association of sparse point clouds with dense natural shapes, and using the image as evidence to validate the predicted depth map.
arXiv Detail & Related papers (2021-06-06T00:21:12Z) - Boosting Monocular Depth Estimation Models to High-Resolution via
Content-Adaptive Multi-Resolution Merging [14.279471205248534]
We show how a consistent scene structure and high-frequency details affect depth estimation performance.
We present a double estimation method that improves the whole-image depth estimation and a patch selection method that adds local details.
We demonstrate that by merging estimations at different resolutions with changing context, we can generate multi-megapixel depth maps with a high level of detail.
arXiv Detail & Related papers (2021-05-28T17:55:15Z) - AcED: Accurate and Edge-consistent Monocular Depth Estimation [0.0]
Single image depth estimation is a challenging problem.
We formulate a fully differentiable ordinal regression and train the network in end-to-end fashion.
A novel per-pixel confidence map computation for depth refinement is also proposed.
arXiv Detail & Related papers (2020-06-16T15:21:00Z) - Channel Attention based Iterative Residual Learning for Depth Map
Super-Resolution [58.626803922196146]
We argue that DSR models trained on synthetic dataset are restrictive and not effective in dealing with real-world DSR tasks.
We make two contributions in tackling real-world degradation of different depth sensors.
We propose a new framework for real-world DSR, which consists of four modules.
arXiv Detail & Related papers (2020-06-02T09:12:23Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.