HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
- URL: http://arxiv.org/abs/2012.11582v2
- Date: Thu, 8 Apr 2021 10:40:36 GMT
- Title: HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
- Authors: Yuval Nirkin, Lior Wolf, Tal Hassner
- Abstract summary: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder.
We design a new type of hypernetwork, composed of a nested U-Net for drawing higher level context features.
- Score: 95.47168925127089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel, real-time, semantic segmentation network in which the
encoder both encodes and generates the parameters (weights) of the decoder.
Furthermore, to allow maximal adaptivity, the weights at each decoder block
vary spatially. For this purpose, we design a new type of hypernetwork,
composed of a nested U-Net for drawing higher level context features, a
multi-headed weight generating module which generates the weights of each block
in the decoder immediately before they are consumed, for efficient memory
utilization, and a primary network that is composed of novel dynamic patch-wise
convolutions. Despite the usage of less-conventional blocks, our architecture
obtains real-time performance. In terms of the runtime vs. accuracy trade-off,
we surpass state of the art (SotA) results on popular semantic segmentation
benchmarks: PASCAL VOC 2012 (val. set) and real-time semantic segmentation on
Cityscapes, and CamVid. The code is available: https://nirkin.com/hyperseg.
Related papers
- SCASeg: Strip Cross-Attention for Efficient Semantic Segmentation [37.2240333333522]
Vision Transformer (ViT) has achieved notable success in computer vision, with its variants extensively validated across various downstream tasks, including semantic segmentation.
This paper proposes Strip Cross-Attention (SCASeg), an innovative decoder head explicitly designed for semantic segmentation.
arXiv Detail & Related papers (2024-11-26T03:00:09Z) - High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - MacFormer: Semantic Segmentation with Fine Object Boundaries [38.430631361558426]
We introduce a new semantic segmentation architecture, MacFormer'', which features two key components.
Firstly, using learnable agent tokens, a Mutual Agent Cross-Attention (MACA) mechanism effectively facilitates the bidirectional integration of features across encoder and decoder layers.
Secondly, a Frequency Enhancement Module (FEM) in the decoder leverages high-frequency and low-frequency components to boost features in the frequency domain.
MacFormer is demonstrated to be compatible with various network architectures and outperforms existing methods in both accuracy and efficiency on datasets benchmark ADE20K and Cityscapes.
arXiv Detail & Related papers (2024-08-11T05:36:10Z) - SegViTv2: Exploring Efficient and Continual Semantic Segmentation with
Plain Vision Transformers [76.13755422671822]
This paper investigates the capability of plain Vision Transformers (ViTs) for semantic segmentation using the encoder-decoder framework.
We introduce a novel Attention-to-Mask (atm) module to design a lightweight decoder effective for plain ViT.
Our decoder outperforms the popular decoder UPerNet using various ViT backbones while consuming only about $5%$ of the computational cost.
arXiv Detail & Related papers (2023-06-09T22:29:56Z) - Distortion-Aware Network Pruning and Feature Reuse for Real-time Video
Segmentation [49.17930380106643]
We propose a novel framework to speed up any architecture with skip-connections for real-time vision tasks.
Specifically, at the arrival of each frame, we transform the features from the previous frame to reuse them at specific spatial bins.
We then perform partial computation of the backbone network on the regions of the current frame that captures temporal differences between the current and previous frame.
arXiv Detail & Related papers (2022-06-20T07:20:02Z) - Deep Multi-Branch Aggregation Network for Real-Time Semantic
Segmentation in Street Scenes [32.54045305607654]
Many state-of-the-art real-time semantic segmentation methods tend to sacrifice some spatial details or contextual information for fast inference.
We propose a novel Deep Multi-branch Aggregation Network (called DMA-Net) based on the encoder-decoder structure to perform real-time semantic segmentation in street scenes.
Our proposed DMA-Net respectively obtains 77.0% and 73.6% mean Intersection over Union (mIoU) at the inference speed of 46.7 FPS and 119.8 FPS by only using a single NVIDIA GTX 1080Ti GPU.
arXiv Detail & Related papers (2022-03-08T12:07:32Z) - Stage-Aware Feature Alignment Network for Real-Time Semantic
Segmentation of Street Scenes [59.81228011432776]
We present a novel Stage-aware Feature Alignment Network (SFANet) for real-time semantic segmentation of street scenes.
By taking into account the unique role of each stage in the decoder, a novel stage-aware Feature Enhancement Block (FEB) is designed to enhance spatial details and contextual information of feature maps from the encoder.
Experimental results show that the proposed SFANet exhibits a good balance between accuracy and speed for real-time semantic segmentation of street scenes.
arXiv Detail & Related papers (2022-03-08T11:46:41Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.