論文の概要: Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines
- arxiv url: http://arxiv.org/abs/2012.11619v1
- Date: Mon, 21 Dec 2020 19:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:16:36.941560
- Title: Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines
- Title(参考訳): 古典および量子エンハンシングボルツマンマシンによる敵対的攻撃に対する防御
- Authors: Aidan Kehoe, Peter Wittek, Yanbo Xue, Alejandro Pozas-Kerstjens
- Abstract要約: 生成モデルはデータセットの基盤となる分布を学習し、それらは本質的に小さな摂動に対してより堅牢である。
MNISTデータセット上のBoltzmannマシンによる攻撃に対して、5%から72%の改良が見られる。
- 参考スコア(独自算出の注目度): 64.62510681492994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a robust defence to adversarial attacks on discriminative
algorithms. Neural networks are naturally vulnerable to small, tailored
perturbations in the input data that lead to wrong predictions. On the
contrary, generative models attempt to learn the distribution underlying a
dataset, making them inherently more robust to small perturbations. We use
Boltzmann machines for discrimination purposes as attack-resistant classifiers,
and compare them against standard state-of-the-art adversarial defences. We
find improvements ranging from 5% to 72% against attacks with Boltzmann
machines on the MNIST dataset. We furthermore complement the training with
quantum-enhanced sampling from the D-Wave 2000Q annealer, finding results
comparable with classical techniques and with marginal improvements in some
cases. These results underline the relevance of probabilistic methods in
constructing neural networks and demonstrate the power of quantum computers,
even with limited hardware capabilities. This work is dedicated to the memory
of Peter Wittek.
- Abstract(参考訳): 我々は、識別アルゴリズムに対する敵意攻撃に対する堅牢な防御を提供する。
ニューラルネットワークは、入力データの小さな、調整された摂動に対して自然に脆弱であり、誤った予測につながる。
それとは対照的に、生成モデルはデータセットの基盤となる分布を学習しようと試み、小さな摂動に対して本質的に堅牢である。
識別目的でボルツマンマシンを攻撃耐性分類器として使用し、標準的な対人防御と比較する。
mnistデータセット上のboltzmannマシンによる攻撃に対する5%から72%の改善が見られた。
さらに,d-wave 2000qアニーラからの量子エンハンスドサンプリングによるトレーニングを補完し,古典的手法に匹敵する結果と限界的な改善点を見出した。
これらの結果は、ニューラルネットワークの構築における確率論的手法の関連性を示し、限られたハードウェア能力でも量子コンピュータのパワーを実証する。
この作品はピーター・ウィッテクの記憶に捧げられている。
関連論文リスト
- Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
そこで本研究では, よりスムーズなホワイトボックス対逆攻撃を提案する。
我々のアプローチは、ジャコビアン行列の隠れた層の$(p,q)$-singularベクトルにスパーシティを提供するトラルキャットパワーに基づいている。
本研究は,攻撃をスパースする最先端モデルの脆弱性を実証し,堅牢な機械学習システムの開発の重要性を強調した。
論文 参考訳(メタデータ) (2024-01-25T09:21:29Z) - Exploring the Vulnerabilities of Machine Learning and Quantum Machine
Learning to Adversarial Attacks using a Malware Dataset: A Comparative
Analysis [0.0]
機械学習(ML)と量子機械学習(QML)は、複雑な問題に対処する上で大きな可能性を示している。
敵攻撃に対する感受性は、これらのシステムをセキュリティに敏感なアプリケーションにデプロイする際の懸念を引き起こす。
本稿では,マルウェアデータセットを用いた敵攻撃に対するMLモデルとQNNモデルの脆弱性の比較分析を行う。
論文 参考訳(メタデータ) (2023-05-31T06:31:42Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
I-IoT環境における敵攻撃の検出と軽減のための二重防御機構を提案する。
まず、新規性検出アルゴリズムを用いて、サンプルに対して逆攻撃があるかどうかを検知する。
攻撃があった場合、敵の再訓練はより堅牢なモデルを提供する一方、通常のサンプルに対して標準的な訓練を適用する。
論文 参考訳(メタデータ) (2023-01-23T22:10:40Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z) - Omni: Automated Ensemble with Unexpected Models against Adversarial
Evasion Attack [35.0689225703137]
機械学習に基づくセキュリティ検出モデルは、敵の回避攻撃の影響を受けやすい。
我々はオムニ(Omni)と呼ばれる手法を提案し、「予期せぬモデル」のアンサンブルを作成する方法を探る。
5種類の敵対的回避攻撃による研究において,オムニは防衛戦略として有望なアプローチであることを示す。
論文 参考訳(メタデータ) (2020-11-23T20:02:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。