APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations
- URL: http://arxiv.org/abs/2012.11798v1
- Date: Tue, 22 Dec 2020 02:31:26 GMT
- Title: APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations
- Authors: Jialei Chen, Zhehui Chen, Chuck Zhang, C. F. Jeff Wu
- Abstract summary: We present a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method.
To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data.
- Score: 6.918364447822299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kriging (or Gaussian process regression) is a popular machine learning method
for its flexibility and closed-form prediction expressions. However, one of the
key challenges in applying kriging to engineering systems is that the available
measurement data is scarce due to the measurement limitations and high sensing
costs. On the other hand, physical knowledge of the engineering system is often
available and represented in the form of partial differential equations (PDEs).
We present in this work a PDE Informed Kriging model (PIK), which introduces
PDE information via a set of PDE points and conducts posterior prediction
similar to the standard kriging method. The proposed PIK model can incorporate
physical knowledge from both linear and nonlinear PDEs. To further improve
learning performance, we propose an Active PIK framework (APIK) that designs
PDE points to leverage the PDE information based on the PIK model and
measurement data. The selected PDE points not only explore the whole input
space but also exploit the locations where the PDE information is critical in
reducing predictive uncertainty. Finally, an expectation-maximization algorithm
is developed for parameter estimation. We demonstrate the effectiveness of APIK
in two synthetic examples, a shock wave case study, and a laser heating case
study.
Related papers
- Parameterized Physics-informed Neural Networks for Parameterized PDEs [24.926311700375948]
In this paper, we propose a novel extension, parameterized physics-informed neural networks (PINNs)
PINNs enable modeling the solutions of parameterized partial differential equations (PDEs) via explicitly encoding a latent representation of PDE parameters.
We demonstrate that P$2$INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs.
arXiv Detail & Related papers (2024-08-18T11:58:22Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs)
The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters.
We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(103) and 1% relative error to the ground truth values.
arXiv Detail & Related papers (2023-11-28T01:35:06Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data.
A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs.
Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data.
arXiv Detail & Related papers (2023-09-14T12:34:42Z) - Noise-aware Physics-informed Machine Learning for Robust PDE Discovery [5.746505534720594]
This work is concerned with discovering the governing partial differential equation (PDE) of a physical system.
Existing methods have demonstrated the PDE identification from finite observations but failed to maintain satisfying performance against noisy data.
We introduce a noise-aware physics-informed machine learning framework to discover the governing PDE from data following arbitrary distributions.
arXiv Detail & Related papers (2022-06-26T15:29:07Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - Discovering Nonlinear PDEs from Scarce Data with Physics-encoded
Learning [11.641708412097659]
We propose a physics-encoded discrete learning framework for discovering PDEs from noisy and scarce data.
We validate our method on three nonlinear PDE systems.
arXiv Detail & Related papers (2022-01-28T07:49:48Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.