Physics-constrained robust learning of open-form partial differential equations from limited and noisy data
- URL: http://arxiv.org/abs/2309.07672v2
- Date: Mon, 29 Apr 2024 09:29:19 GMT
- Title: Physics-constrained robust learning of open-form partial differential equations from limited and noisy data
- Authors: Mengge Du, Yuntian Chen, Longfeng Nie, Siyu Lou, Dongxiao Zhang,
- Abstract summary: This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data.
A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs.
Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data.
- Score: 1.50528618730365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unveiling the underlying governing equations of nonlinear dynamic systems remains a significant challenge. Insufficient prior knowledge hinders the determination of an accurate candidate library, while noisy observations lead to imprecise evaluations, which in turn result in redundant function terms or erroneous equations. This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data. The framework operates through two alternating update processes: discovering and embedding. The discovering phase employs symbolic representation and a novel reinforcement learning (RL)-guided hybrid PDE generator to efficiently produce diverse open-form PDEs with tree structures. A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs. PDEs with higher rewards are utilized to iteratively optimize the generator via the RL strategy and the best-performing PDE is selected by a parameter-free stability metric. The embedding phase integrates the initially identified PDE from the discovering process as a physical constraint into the predictive model for robust training. The traversal of PDE trees automates the construction of the computational graph and the embedding process without human intervention. Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data and outperform other physics-informed neural network-based discovery methods. This work opens new potential for exploring real-world systems with limited understanding.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Partial-differential-algebraic equations of nonlinear dynamics by Physics-Informed Neural-Network: (I) Operator splitting and framework assessment [51.3422222472898]
Several forms for constructing novel physics-informed-networks (PINN) for the solution of partial-differential-algebraic equations are proposed.
Among these novel methods are the PDE forms, which evolve from the lower-level form with fewer unknown dependent variables to higher-level form with more dependent variables.
arXiv Detail & Related papers (2024-07-13T22:48:17Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Noise-aware Physics-informed Machine Learning for Robust PDE Discovery [5.746505534720594]
This work is concerned with discovering the governing partial differential equation (PDE) of a physical system.
Existing methods have demonstrated the PDE identification from finite observations but failed to maintain satisfying performance against noisy data.
We introduce a noise-aware physics-informed machine learning framework to discover the governing PDE from data following arbitrary distributions.
arXiv Detail & Related papers (2022-06-26T15:29:07Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Discovering Nonlinear PDEs from Scarce Data with Physics-encoded
Learning [11.641708412097659]
We propose a physics-encoded discrete learning framework for discovering PDEs from noisy and scarce data.
We validate our method on three nonlinear PDE systems.
arXiv Detail & Related papers (2022-01-28T07:49:48Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - PDE-READ: Human-readable Partial Differential Equation Discovery using
Deep Learning [0.0]
We introduce a new approach for PDE discovery that uses two Rational Neural Networks and a principled sparse regression algorithm.
We successfully identify the Heat, Burgers, and Korteweg-De Vries equations with remarkable consistency.
Our approach is unprecedentedly robust to both sparsity and noise and is, therefore, applicable to real-world observational data.
arXiv Detail & Related papers (2021-11-01T15:00:16Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
We present a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method.
To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data.
arXiv Detail & Related papers (2020-12-22T02:31:26Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering.
We propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system.
In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions.
arXiv Detail & Related papers (2020-09-08T15:46:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.