Adversarial Multiscale Feature Learning for Overlapping Chromosome
Segmentation
- URL: http://arxiv.org/abs/2012.11847v2
- Date: Fri, 26 Mar 2021 05:44:18 GMT
- Title: Adversarial Multiscale Feature Learning for Overlapping Chromosome
Segmentation
- Authors: Liye Mei, Yalan Yu, Yueyun Weng, Xiaopeng Guo, Yan Liu, Du Wang, Sheng
Liu, Fuling Zhou, and Cheng Lei
- Abstract summary: Chromosome karyotype analysis is of great clinical importance in the diagnosis and treatment of diseases.
Due to the strip shape of the chromosomes, they easily get overlapped with each other when imaged.
We present an adversarial multiscale feature learning framework to improve the accuracy and adaptability of overlapping chromosome segmentation.
- Score: 6.180155406275231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chromosome karyotype analysis is of great clinical importance in the
diagnosis and treatment of diseases, especially for genetic diseases. Since
manual analysis is highly time and effort consuming, computer-assisted
automatic chromosome karyotype analysis based on images is routinely used to
improve the efficiency and accuracy of the analysis. Due to the strip shape of
the chromosomes, they easily get overlapped with each other when imaged,
significantly affecting the accuracy of the analysis afterward. Conventional
overlapping chromosome segmentation methods are usually based on manually
tagged features, hence, the performance of which is easily affected by the
quality, such as resolution and brightness, of the images. To address the
problem, in this paper, we present an adversarial multiscale feature learning
framework to improve the accuracy and adaptability of overlapping chromosome
segmentation. Specifically, we first adopt the nested U-shape network with
dense skip connections as the generator to explore the optimal representation
of the chromosome images by exploiting multiscale features. Then we use the
conditional generative adversarial network (cGAN) to generate images similar to
the original ones, the training stability of which is enhanced by applying the
least-square GAN objective. Finally, we employ Lovasz-Softmax to help the model
converge in a continuous optimization setting. Comparing with the established
algorithms, the performance of our framework is proven superior by using public
datasets in eight evaluation criteria, showing its great potential in
overlapping chromosome segmentation
Related papers
- Masked conditional variational autoencoders for chromosome straightening [14.665481276886194]
Karyotyping is of importance for detecting chromosomal aberrations in human disease.
chromosomes easily appear curved in microscopic images, which prevents cytogeneticists from analyzing chromosome types.
We propose a framework for chromosome straightening, which comprises a preliminary processing algorithm and a generative model.
arXiv Detail & Related papers (2023-06-25T05:11:41Z) - Karyotype AI for Precision Oncology [24.283441582734255]
Efforts to automate karyotype analysis to date fell short in aberration detection.
TopViT outperformed CNN (Inception) models with >99.3% accuracy for chromosome identification.
arXiv Detail & Related papers (2022-11-20T04:59:23Z) - Chromosome Segmentation Analysis Using Image Processing Techniques and
Autoencoders [0.0]
Chromosome analysis and identification from metaphase images is a critical part of cytogenetics based medical diagnosis.
Process of identification of chromosomes from metaphase is a tedious one and requires trained personnel and several hours to perform.
We propose a method to automate the process of detection and segmentation of chromosomes from a given metaphase image.
arXiv Detail & Related papers (2022-09-12T17:06:42Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
We propose a novel framework, namely Domain Invariant Model with Graph Convolutional Network (DIM-GCN)
We first propose a Bayesian network, which explicitly decomposes the latent variables into disease-related and other disease-irrelevant parts that are provable to be disentangled from each other.
To better capture the macroscopic features, we leverage the observed clinical attributes as a goal for reconstruction, via Graph Convolutional Network (GCN)
arXiv Detail & Related papers (2022-04-21T08:23:44Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Deep Anomaly Generation: An Image Translation Approach of Synthesizing
Abnormal Banded Chromosome Images [0.0]
We implement a conditional adversarial network that allows generation of realistic single chromosome images.
An image-to-image translation approach based on self-generated 2D chromosome segmentation label maps is used.
We believe that this approach can be exploited for data augmentation of chromosome data sets with structural abnormalities.
arXiv Detail & Related papers (2021-09-20T17:16:23Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - A Novel Application of Image-to-Image Translation: Chromosome
Straightening Framework by Learning from a Single Image [3.7769813168959527]
chromosome straightening plays a significant role in the pathological study of chromosomes and in the development of cytogenetic maps.
We propose a novel framework based on image-to-image translation to learn a pertinent mapping dependence for synthesizing straightened chromosomes.
arXiv Detail & Related papers (2021-03-04T05:05:41Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.