Deep Anomaly Generation: An Image Translation Approach of Synthesizing
Abnormal Banded Chromosome Images
- URL: http://arxiv.org/abs/2109.09702v1
- Date: Mon, 20 Sep 2021 17:16:23 GMT
- Title: Deep Anomaly Generation: An Image Translation Approach of Synthesizing
Abnormal Banded Chromosome Images
- Authors: Lukas Uzolas, Javier Rico, Pierrick Coup\'e, Juan C. SanMiguel
Gy\"orgy Cserey
- Abstract summary: We implement a conditional adversarial network that allows generation of realistic single chromosome images.
An image-to-image translation approach based on self-generated 2D chromosome segmentation label maps is used.
We believe that this approach can be exploited for data augmentation of chromosome data sets with structural abnormalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in deep-learning-based pipelines have led to breakthroughs in a
variety of microscopy image diagnostics. However, a sufficiently big training
data set is usually difficult to obtain due to high annotation costs. In the
case of banded chromosome images, the creation of big enough libraries is
difficult for multiple pathologies due to the rarity of certain genetic
disorders. Generative Adversarial Networks (GANs) have proven to be effective
in generating synthetic images and extending training data sets. In our work,
we implement a conditional adversarial network that allows generation of
realistic single chromosome images following user-defined banding patterns. To
this end, an image-to-image translation approach based on self-generated 2D
chromosome segmentation label maps is used. Our validation shows promising
results when synthesizing chromosomes with seen as well as unseen banding
patterns. We believe that this approach can be exploited for data augmentation
of chromosome data sets with structural abnormalities. Therefore, the proposed
method could help to tackle medical image analysis problems such as data
simulation, segmentation, detection, or classification in the field of
cytogenetics.
Related papers
- Could We Generate Cytology Images from Histopathology Images? An Empirical Study [1.791005104399795]
In this study, we have explored traditional image-to-image transfer models like CycleGAN, and Neural Style Transfer.
In this study, we have explored traditional image-to-image transfer models like CycleGAN, and Neural Style Transfer.
arXiv Detail & Related papers (2024-03-16T10:43:12Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - AutoKary2022: A Large-Scale Densely Annotated Dataset for Chromosome
Instance Segmentation [8.029213659494856]
AutoKary2022 contains over 27,000 chromosome instances in 612 microscopic images from 50 patients.
Each instance is annotated with a polygonal mask and a class label to assist in precise chromosome detection and segmentation.
arXiv Detail & Related papers (2023-03-28T09:15:55Z) - Chromosome Segmentation Analysis Using Image Processing Techniques and
Autoencoders [0.0]
Chromosome analysis and identification from metaphase images is a critical part of cytogenetics based medical diagnosis.
Process of identification of chromosomes from metaphase is a tedious one and requires trained personnel and several hours to perform.
We propose a method to automate the process of detection and segmentation of chromosomes from a given metaphase image.
arXiv Detail & Related papers (2022-09-12T17:06:42Z) - A Novel Application of Image-to-Image Translation: Chromosome
Straightening Framework by Learning from a Single Image [3.7769813168959527]
chromosome straightening plays a significant role in the pathological study of chromosomes and in the development of cytogenetic maps.
We propose a novel framework based on image-to-image translation to learn a pertinent mapping dependence for synthesizing straightened chromosomes.
arXiv Detail & Related papers (2021-03-04T05:05:41Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Adversarial Multiscale Feature Learning for Overlapping Chromosome
Segmentation [6.180155406275231]
Chromosome karyotype analysis is of great clinical importance in the diagnosis and treatment of diseases.
Due to the strip shape of the chromosomes, they easily get overlapped with each other when imaged.
We present an adversarial multiscale feature learning framework to improve the accuracy and adaptability of overlapping chromosome segmentation.
arXiv Detail & Related papers (2020-12-22T06:04:22Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.