Hallmarks of tunneling dynamics with broken reflective symmetry
- URL: http://arxiv.org/abs/2012.11888v3
- Date: Fri, 24 Sep 2021 14:29:12 GMT
- Title: Hallmarks of tunneling dynamics with broken reflective symmetry
- Authors: V.P. Berezovoj, M.I. Konchatnij and A.J. Nurmagambetov
- Abstract summary: We study features of tunneling dynamics in an exactly-solvable model of N=4 quantum mechanics with a multi-well potential and broken reflective symmetry.
Taking the partial localization and the coherent tunneling destruction as basic examples, we indicate main advantages of using isospectral exactly-solvable Hamiltonians in studies quantum mechanical systems with two- and three-well potentials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study features of tunneling dynamics in an exactly-solvable model of N=4
supersymmetric quantum mechanics with a multi-well potential and with broken
reflective symmetry. Quantum systems with a phenomenological potential of this
type demonstrate the phenomenon of partial localization of under-barrier
states, possibly resulting in the appearance of the so-called "resonant"
tunneling, or the phenomenon of coherent tunneling destruction, referring to
the complete localization. Taking the partial localization and the coherent
tunneling destruction as basic examples, we indicate main advantages of using
isospectral exactly-solvable Hamiltonians in studies quantum mechanical systems
with two- and three-well potentials. They, in particular, are: having enough
freedom of changing the potential shape in a wide range, that allows one to
choose an exactly-solvable model close to characteristics of the
phenomenological one; ability of changing the number of local minima and
symmetry characteristics of the potential (symmetric or deformed) without
changing the main part of the spectrum; engaging a smart basis of states, that
dramatically decreases the dimensionality of matrices used in the
diagonalization procedure of the corresponding spectral problem.
Related papers
- Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems [0.0]
The quantum Mpemba effect is the counter-intuitive non-equilibrium phenomenon wherein the dynamic restoration of a broken symmetry occurs more rapidly when the initial state exhibits a higher degree of symmetry breaking.
Here we focus on a two-dimensional free-fermion lattice employing the entanglement asymmetry as a measure of symmetry breaking.
We find that the quantum Mpemba effect is strongly affected by the size of the system in the transverse dimension, with the potential to either enhance or spoil the phenomenon depending on the initial states.
arXiv Detail & Related papers (2024-03-07T13:38:40Z) - Characteristic features of the strongly-correlated regime: Lessons from
a 3-fermion one-dimensional harmonic trap [0.0]
We study the transition into a strongly-correlated regime of 3 fermions trapped in a harmonic potential.
Some features of the regime are also present in strongly-correlated materials relevant to the industry.
arXiv Detail & Related papers (2024-01-05T03:38:48Z) - Machine Learning Catalysis of Quantum Tunneling [0.07281763676971992]
We show that, by applying Machine Learning techniques when the system is coupled to ancilla, one optimize the parameters of both the ancillary component and the coupling.
We provide illustrative examples for the paradigmatic scenario involving a two-mode system and a two-mode ancilla.
The increase of the tunneling probability is rooted in the decrease of the two-well asymmetry due to the coherent oscillations induced by the coupling to the ancilla.
arXiv Detail & Related papers (2023-10-16T08:10:41Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Fourth-Order Exceptional Points in Correlated Quantum Many-Body Systems [0.0]
Non-Hermtian (NH) Hamiltonians have become an important tool with applications ranging from classical meta-materials to quantum many-body systems.
Exceptional points, the NH counterpart of spectral degeneracies, are among the paramount phenomena unique to the NH realm.
We propose a microscopic model of correlated fermions in three spatial dimensions and demonstrate the occurrence of interaction-induced fourth-order exceptional points.
arXiv Detail & Related papers (2021-06-22T18:00:06Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.