Characteristic features of the strongly-correlated regime: Lessons from
a 3-fermion one-dimensional harmonic trap
- URL: http://arxiv.org/abs/2401.04733v1
- Date: Fri, 5 Jan 2024 03:38:48 GMT
- Title: Characteristic features of the strongly-correlated regime: Lessons from
a 3-fermion one-dimensional harmonic trap
- Authors: Victor Caliva and Johanna I Fuks
- Abstract summary: We study the transition into a strongly-correlated regime of 3 fermions trapped in a harmonic potential.
Some features of the regime are also present in strongly-correlated materials relevant to the industry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The transition into a strongly-correlated regime of 3 fermions trapped in a
one-dimensional harmonic potential is investigated. This interesting, but
little-studied system, allows us to identify characteristic features of the
regime, some of which are also present in strongly-correlated materials
relevant to the industry. Furthermore, our findings describe the behavior of
electrons in quantum dots, ions in Paul traps, and even fermionic atoms in
one-dimensional optical lattices. Near the ground state, all these platforms
can be described as fermions trapped in a harmonic potential. The correlation
regime can be controlled by varying the natural frequency of the trapping
potential, and to probe it, we propose to use twisted light. We identify 4
signatures of strong correlation in the one-dimensional 3-fermion trap, which
are likely to be present for any number N of trapped fermions: i) the ground
state density is strongly localized with N maximally separated peaks (Wigner
Crystal) ii) the symmetric and antisymmetric ground state wavefunctions become
degenerate (bosonization) iii) the von Neumann entropy grows, iv) the energy
spectrum is fully characterized by N normal modes or less.
Related papers
- Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantifying Electron Entanglement Faithfully [0.0]
Entanglement is one of the most fascinating concepts of modern physics.
We derive a formula for the relative entropy of entanglement between electron orbitals.
Its broad applicability in the quantum sciences is demonstrated.
arXiv Detail & Related papers (2022-07-07T15:32:12Z) - Emergent s-wave interactions between identical fermions in
quasi-one-dimensional geometries [0.0]
A low-energy scattering channel has even particle-exchange parity along the q1D axis, as if the underlying interactions were s-wave.
This emergent exchange symmetry is enabled by orbital singlet wave functions in the strongly confined directions.
We measure both the q1D odd-wave and even-wave "contact" parameters for the first time, and compare them to theoretical predictions of one-dimensional many-body models.
arXiv Detail & Related papers (2022-06-21T14:14:15Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Localization Dynamics from Static and Mobile Impurities [3.803244458097104]
We study the superfluid response and localization dynamics from static and mobile impurities.
The superfluidity is formed in the rung-Mott phase of a bosonic ladder model.
We study the superfluid currents both in the weakly-coupled and strongly-coupled rungs limits for the bosons.
arXiv Detail & Related papers (2021-01-16T10:10:06Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.