論文の概要: Deep learning-based virtual refocusing of images using an engineered
point-spread function
- arxiv url: http://arxiv.org/abs/2012.11892v1
- Date: Tue, 22 Dec 2020 09:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:36:41.267672
- Title: Deep learning-based virtual refocusing of images using an engineered
point-spread function
- Title(参考訳): 工学的ポイントスプレッド関数を用いた画像の深層学習に基づく仮想再焦点
- Authors: Xilin Yang, Luzhe Huang, Yilin Luo, Yichen Wu, Hongda Wang, Yair
Rivenson, and Aydogan Ozcan
- Abstract要約: カスケードニューラルネットワークとDH-PSF(Double-helix point-spread function)によって実現された拡張深度フィールド(DOF)上の仮想画像再焦点法を提案する。
蛍光顕微鏡のDOFを20倍に拡張します。
- 参考スコア(独自算出の注目度): 1.2977570993112095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a virtual image refocusing method over an extended depth of field
(DOF) enabled by cascaded neural networks and a double-helix point-spread
function (DH-PSF). This network model, referred to as W-Net, is composed of two
cascaded generator and discriminator network pairs. The first generator network
learns to virtually refocus an input image onto a user-defined plane, while the
second generator learns to perform a cross-modality image transformation,
improving the lateral resolution of the output image. Using this W-Net model
with DH-PSF engineering, we extend the DOF of a fluorescence microscope by
~20-fold. This approach can be applied to develop deep learning-enabled image
reconstruction methods for localization microscopy techniques that utilize
engineered PSFs to improve their imaging performance, including spatial
resolution and volumetric imaging throughput.
- Abstract(参考訳): 本稿では,DH-PSF(Double-helix point-spread function)とカスケードニューラルネットワークによって実現された拡張深度(DOF)上の仮想画像再焦点法を提案する。
このネットワークモデルはW-Netと呼ばれ、2つのカスケードジェネレータと識別器ネットワークペアで構成されている。
第1のジェネレータネットワークは、入力画像をユーザ定義平面に仮想的に再フォーカスし、第2のジェネレータは、出力画像の横分解能を改善して、クロスモダリティ画像変換を行うように学習する。
DH-PSF技術を用いたこのW-Netモデルを用いて、蛍光顕微鏡のDOFを約20倍拡張する。
本手法は,psfsを用いて空間分解能や体積撮像スループットなどの画像性能を向上させるために,深層学習可能な局所顕微鏡のための画像再構成手法の開発に応用できる。
関連論文リスト
- CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer [15.930878163092983]
超解像(SR)は低解像度画像の品質を高めることを目的としており、医用画像に広く応用されている。
我々は,画像ウェーブレット変換とトランスフォーマーアーキテクチャを利用した,CWT-Netと呼ばれる新しいネットワークを提案する。
本モデルは, 性能評価と可視化評価において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-09-11T08:26:28Z) - Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
画素レベルの画像・マルチビュー生成のための新しい手法を提案する。
従来の作業とは異なり、潜伏映像拡散モデルのVAEデコーダにマルチビュー画像にアテンション層を組み込む。
本モデルにより,マルチビュー画像間の画素アライメントが向上する。
論文 参考訳(メタデータ) (2024-08-26T04:56:41Z) - Deep Linear Array Pushbroom Image Restoration: A Degradation Pipeline
and Jitter-Aware Restoration Network [26.86292926584254]
リニアアレイプッシュブルーム(LAP)イメージング技術はリモートセンシングの領域で広く利用されている。
点拡散関数(PSF)を推定するアルゴリズムなど、従来のLAP画像の復元手法は、限られた性能を示す。
本稿では,2段階の歪みとぼかしを除去するjitter-Aware Restoration Network (JARNet)を提案する。
論文 参考訳(メタデータ) (2024-01-16T07:26:26Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [63.54342601757723]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
多次元特徴量に基づくトモSARイメージングを実現するためのモデルデータ駆動型ネットワークを提案する。
画像シーンの多次元的特徴を効果的に向上するために、2つの2次元処理モジュール(畳み込みエンコーダ-デコーダ構造)を追加します。
従来のCS-based FISTA法とDL-based gamma-Net法と比較して,提案手法は良好な画像精度を有しつつ,完全性を向上させる。
論文 参考訳(メタデータ) (2022-11-28T02:01:43Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
本稿では,古典的反復法をディープラーニングアプリケーションに組み込んだ非盲検画像デコンボリューションモデルを提案する。
このアルゴリズムは、トレーニング可能な畳み込み層と統合され、復元された画像構造と詳細を強化する。
論文 参考訳(メタデータ) (2022-09-30T11:15:03Z) - LWGNet: Learned Wirtinger Gradients for Fourier Ptychographic Phase
Retrieval [14.588976801396576]
本稿では,フォワードイメージングシステムの知識と深層データ駆動ネットワークを組み合わせたハイブリッドモデル駆動残差ネットワークを提案する。
従来のアンローリング技術とは異なり、LWGNetは従来のディープ・ラーニング・テクニックよりも少ない段数しか使用していない。
この低ビット深度・低コストセンサの性能向上は、FPM撮像装置のコストを大幅に下げる可能性がある。
論文 参考訳(メタデータ) (2022-08-08T17:22:54Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
本稿では、ディープニューラルネットワークを用いた従来の2段階フレームワークの複製により、解釈可能性と結果の精度が向上することを提唱する。
ネットワークは,1)深部MVS技術を用いた局所深度マップの局所計算,2)深部マップと画像の特徴を融合させて単一のTSDFボリュームを構築する。
異なる視点から取得した画像間のマッチング性能を改善するために,PosedConvと呼ばれる回転不変な3D畳み込みカーネルを導入する。
論文 参考訳(メタデータ) (2021-08-19T11:33:58Z) - Single Image Brightening via Multi-Scale Exposure Fusion with Hybrid
Learning [48.890709236564945]
小さいISOと小さな露光時間は、通常、背面または低い光条件下で画像をキャプチャするために使用される。
本稿では、そのような画像を明るくするために、単一の画像輝度化アルゴリズムを提案する。
提案アルゴリズムは,露出時間が大きい2つの仮想画像を生成するための,ユニークなハイブリッド学習フレームワークを含む。
論文 参考訳(メタデータ) (2020-07-04T08:23:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。