論文の概要: LWGNet: Learned Wirtinger Gradients for Fourier Ptychographic Phase
Retrieval
- arxiv url: http://arxiv.org/abs/2208.04283v1
- Date: Mon, 8 Aug 2022 17:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 13:36:42.651688
- Title: LWGNet: Learned Wirtinger Gradients for Fourier Ptychographic Phase
Retrieval
- Title(参考訳): lwgnet: フーリエptychography位相検索のための学習wirtinger勾配
- Authors: Atreyee Saha, Salman S Khan, Sagar Sehrawat, Sanjana S Prabhu, Shanti
Bhattacharya, Kaushik Mitra
- Abstract要約: 本稿では,フォワードイメージングシステムの知識と深層データ駆動ネットワークを組み合わせたハイブリッドモデル駆動残差ネットワークを提案する。
従来のアンローリング技術とは異なり、LWGNetは従来のディープ・ラーニング・テクニックよりも少ない段数しか使用していない。
この低ビット深度・低コストセンサの性能向上は、FPM撮像装置のコストを大幅に下げる可能性がある。
- 参考スコア(独自算出の注目度): 14.588976801396576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fourier Ptychographic Microscopy (FPM) is an imaging procedure that overcomes
the traditional limit on Space-Bandwidth Product (SBP) of conventional
microscopes through computational means. It utilizes multiple images captured
using a low numerical aperture (NA) objective and enables high-resolution phase
imaging through frequency domain stitching. Existing FPM reconstruction methods
can be broadly categorized into two approaches: iterative optimization based
methods, which are based on the physics of the forward imaging model, and
data-driven methods which commonly employ a feed-forward deep learning
framework. We propose a hybrid model-driven residual network that combines the
knowledge of the forward imaging system with a deep data-driven network. Our
proposed architecture, LWGNet, unrolls traditional Wirtinger flow optimization
algorithm into a novel neural network design that enhances the gradient images
through complex convolutional blocks. Unlike other conventional unrolling
techniques, LWGNet uses fewer stages while performing at par or even better
than existing traditional and deep learning techniques, particularly, for
low-cost and low dynamic range CMOS sensors. This improvement in performance
for low-bit depth and low-cost sensors has the potential to bring down the cost
of FPM imaging setup significantly. Finally, we show consistently improved
performance on our collected real data.
- Abstract(参考訳): Fourier Ptychographic Microscopy (FPM) は、従来の顕微鏡の空間幅積(SBP)の限界を計算手段で克服する撮像法である。
低数値開口(na)目的の複数の画像を取り込み、周波数領域縫合による高分解能位相撮像を可能にする。
既存のFPM再構成手法は、フォワードイメージングモデルの物理に基づく反復最適化法と、フィードフォワード深層学習フレームワークを用いるデータ駆動方式の2つのアプローチに大別することができる。
本稿では,前方撮像システムの知識と深層データ駆動ネットワークを組み合わせたハイブリッドモデル駆動残差ネットワークを提案する。
提案するアーキテクチャであるlwgnetは,従来のウィシンガーフロー最適化アルゴリズムを,複雑な畳み込みブロックによる勾配画像を強化する新たなニューラルネットワーク設計に展開する。
他の一般的なアンロール技術とは異なり、lwgnetは既存の従来のディープラーニング技術、特に低コストかつ低ダイナミックレンジのcmosセンサーと同等かそれ以上の性能を保ちながら、少ないステージを使用する。
この低ビット深度および低コストセンサーの性能向上は、fpm撮像装置のコストを大幅に下げる可能性を秘めている。
最後に,収集した実データに対して一貫した性能向上を示す。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - NL-CS Net: Deep Learning with Non-Local Prior for Image Compressive
Sensing [7.600617428107161]
近年,画像の圧縮センシング(CS)にディープラーニングが応用されている。
本稿では,従来の最適化手法の解釈可能性と,NL-CS Netと呼ばれるネットワークベース手法の高速化を併用した,非局所的前処理を用いた新しいCS手法を提案する。
論文 参考訳(メタデータ) (2023-05-06T02:34:28Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
低照度画像強調(LLIE)の課題を考察し,4K解像度と8K解像度の画像からなる大規模データベースを導入する。
我々は、系統的なベンチマーク研究を行い、現在のLLIEアルゴリズムと比較する。
第2のコントリビューションとして,変換器をベースとした低照度化手法であるLLFormerを紹介する。
論文 参考訳(メタデータ) (2022-12-22T09:05:07Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
低照度画像の高精細化は、低照度画像から通常の露光画像を復元することを目的とした古典的なコンピュータビジョン問題である。
この分野でよく使われる畳み込みニューラルネットワークは、空間領域の低周波局所構造の特徴をサンプリングするのに長けている。
周波数位相のセマンティクスの制約の下で高品質なテクスチャの詳細を復元できるフーリエ係数を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2022-09-16T13:56:09Z) - DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
Microscopic Imaging using Digital Holography [3.4635026053111484]
デジタルホログラフィー(Digital holography)は、平面波面を持つレーザービームを物体に放出し、ホログラムと呼ばれる回折波形の強度を測定する3Dイメージング技術である。
近年,より正確なホログラフィック処理に深層学習(DL)法が用いられている。
本稿では, 識別ネットワークを用いて, 復元品質のセマンティック尺度を実現する, 生成的敵ネットワークに基づく新しいDLアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:13:45Z) - Physics to the Rescue: Deep Non-line-of-sight Reconstruction for
High-speed Imaging [13.271762773872476]
本稿では,高品位かつ堅牢なNLOS再構成のためのニューラルネットワークに,波動伝搬とボリュームレンダリングの相補的な物理を組み込んだ新しいディープモデルを提案する。
本手法は, 実測値と実測値の両方に基づいて, 従来の物理・学習手法よりも優れていた。
論文 参考訳(メタデータ) (2022-05-03T02:47:02Z) - HerosNet: Hyperspectral Explicable Reconstruction and Optimal Sampling
Deep Network for Snapshot Compressive Imaging [41.91463343106411]
ハイパースペクトルイメージングは、特にリモートセンシング、農業、医学において、幅広い用途に欠かせない画像モダリティである。
低予算のスナップショット測定からハイパスペクトル画像(HSI)を再構築する、遅い、高価、またはかさばる既存のハイパースペクトルカメラにインスパイアされたことが注目されている。
スペクトルスナップショットセンシング(SCI)のための最近のディープ・アンフォールディング・ネットワーク(DUN)は、目覚ましい成功を収めている。
本稿では、ISTAアンフォールディングフレームワークの下で複数のフェーズを含むHerosNetと呼ばれる、SCIのためのハイパースペクトル拡張型再構成と最適サンプリングディープネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-12T13:42:49Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。