論文の概要: Domain Adaptation of NMT models for English-Hindi Machine Translation
Task at AdapMT ICON 2020
- arxiv url: http://arxiv.org/abs/2012.12112v2
- Date: Wed, 23 Dec 2020 11:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:45:21.603902
- Title: Domain Adaptation of NMT models for English-Hindi Machine Translation
Task at AdapMT ICON 2020
- Title(参考訳): AdapMT ICON 2020における英語・ヒンディー語機械翻訳タスクのためのNMTモデルのドメイン適応
- Authors: Ramchandra Joshi, Rushabh Karnavat, Kaustubh Jirapure, Raviraj Joshi
- Abstract要約: 本稿では,adapmt共有タスクアイコン2020で提示された英語ヒンディー語のニューラルマシン翻訳システムについて述べる。
我々のチームは化学・一般分野のEn-Hi翻訳タスクで第1位、AI分野のEn-Hi翻訳タスクで第2位にランクインした。
- 参考スコア(独自算出の注目度): 2.572404739180802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Neural Machine Translation (NMT) models have proved to
produce a state of the art results on machine translation for low resource
Indian languages. This paper describes the neural machine translation systems
for the English-Hindi language presented in AdapMT Shared Task ICON 2020. The
shared task aims to build a translation system for Indian languages in specific
domains like Artificial Intelligence (AI) and Chemistry using a small in-domain
parallel corpus. We evaluated the effectiveness of two popular NMT models i.e,
LSTM, and Transformer architectures for the English-Hindi machine translation
task based on BLEU scores. We train these models primarily using the out of
domain data and employ simple domain adaptation techniques based on the
characteristics of the in-domain dataset. The fine-tuning and mixed-domain data
approaches are used for domain adaptation. Our team was ranked first in the
chemistry and general domain En-Hi translation task and second in the AI domain
En-Hi translation task.
- Abstract(参考訳): ニューラルマシン翻訳(NMT)モデルの最近の進歩は、低資源のインドの言語に対する機械翻訳における技術結果の状態を実証している。
本稿では,adapmt共有タスクアイコン2020で提示された英語ヒンディー語のニューラルマシン翻訳システムについて述べる。
この共有タスクは、ai(artificial intelligence)や化学といった特定のドメインにおけるインド言語のための、小さなドメイン内並列コーパスを用いた翻訳システムの構築を目的としている。
BLEUスコアに基づく英ヒンディー語機械翻訳タスクにおける2つのNMTモデル,LSTM,Transformerアーキテクチャの有効性を評価した。
主にドメイン外のデータを用いてこれらのモデルをトレーニングし、ドメイン内のデータセットの特徴に基づいてシンプルなドメイン適応技術を用いています。
微調整と混合ドメインデータアプローチはドメイン適応に使用される。
我々のチームは化学・一般分野のEn-Hi翻訳タスクで第1位、AI分野のEn-Hi翻訳タスクで第2位にランクインした。
関連論文リスト
- Domain Adaptation for Arabic Machine Translation: The Case of Financial
Texts [0.7673339435080445]
金融分野でアラビア英語(AR-EN)翻訳のための並列コーパスを開発する。
我々は、ChatGPT-3.5 Turboを含むいくつかのNMTおよびLarge Languageモデルを微調整する。
ChatGPT翻訳の品質は, 自動評価および人的評価に基づく他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-22T13:37:19Z) - $m^4Adapter$: Multilingual Multi-Domain Adaptation for Machine
Translation with a Meta-Adapter [128.69723410769586]
多言語ニューラルネットワーク翻訳モデル(MNMT)は、ドメインと言語ペアのデータに基づいて評価すると、最先端の性能が得られる。
ドメインシフトや新しい言語ペアへの変換にMNMTモデルを使用すると、パフォーマンスが劇的に低下する。
我々はメタラーニングとアダプタを用いたドメイン知識と言語知識を組み合わせた$m4Adapter$を提案する。
論文 参考訳(メタデータ) (2022-10-21T12:25:05Z) - Domain-Specific Text Generation for Machine Translation [7.803471587734353]
ドメイン固有データ拡張のための最先端事前学習言語モデル(LM)を利用したドメイン適応手法を提案する。
我々は、ドメイン内テキストの翻訳を大幅に改善するモデルを訓練するために、混合微調整を用いています。
論文 参考訳(メタデータ) (2022-08-11T16:22:16Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
我々は、タスク固有のテキストデータの翻訳を最初に取得するために、中間ステップとしてNeural Machine Translationを使用します。
我々はNMTビームサーチグラフから単語混乱ネットワークを導出する手法を開発した。
NMT混在ネットワークは、n-gramと繰り返しニューラルネットワークLMの両方の難易度を低減するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-21T10:29:20Z) - Non-Parametric Unsupervised Domain Adaptation for Neural Machine
Translation [61.27321597981737]
$k$NN-MTは、トレーニング済みニューラルネットワーク翻訳(NMT)モデルとドメイン固有のトークンレベルである$k$-nearest-neighbor検索を直接組み込むという有望な能力を示している。
対象言語におけるドメイン内単言語文を直接使用して,$k$-nearest-neighbor検索に有効なデータストアを構築する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-14T11:50:01Z) - FDMT: A Benchmark Dataset for Fine-grained Domain Adaptation in Machine
Translation [53.87731008029645]
機械翻訳(FDMT)における実世界のきめ細かいドメイン適応タスクを提案する。
FDMTデータセットは、自動運転車、AI教育、リアルタイムネットワーク、スマートフォンの4つのサブドメインで構成されている。
この新しい設定で定量的な実験と深い分析を行い、きめ細かいドメイン適応タスクをベンチマークします。
論文 参考訳(メタデータ) (2020-12-31T17:15:09Z) - SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task [111.91077204077817]
我々は英語・中国語・英語・ポーランド語・ドイツ語・アッパー・ソルビアンという3つの言語対の4つの翻訳指導に参加した。
言語ペアの異なる条件に基づいて、我々は多様なニューラルネットワーク翻訳(NMT)技術の実験を行った。
私たちの提出書では、主要なシステムは英語、中国語、ポーランド語、英語、ドイツ語から上セルビア語への翻訳の道順で第一位を獲得しました。
論文 参考訳(メタデータ) (2020-10-11T00:40:05Z) - Iterative Domain-Repaired Back-Translation [50.32925322697343]
本稿では,ドメイン内並列コーパスが少ない,あるいは存在しない,低リソースのドメイン固有翻訳に焦点を当てる。
本稿では,合成バイリンガルデータの翻訳を洗練するためのドメイン・リペアモデルを提案する。
提案手法の有効性を示すため,NMTモデルを特定の領域と一般領域から特定の領域に適応させる実験を行った。
論文 参考訳(メタデータ) (2020-10-06T04:38:09Z) - A Simple Baseline to Semi-Supervised Domain Adaptation for Machine
Translation [73.3550140511458]
State-of-the-art Neural Machine Translation (NMT)システムは、データハングリーであり、教師付きデータを持たない新しいドメインではパフォーマンスが良くない。
NMTの半教師付きドメイン適応シナリオに対する単純だが効果のあるアプローチを提案する。
このアプローチは、言語モデリング、バックトランスレーション、教師付き翻訳の3つのトレーニング目標を通じて、TransformerベースのNMTモデルを反復的にトレーニングする。
論文 参考訳(メタデータ) (2020-01-22T16:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。