Dynamics of two-dimensional open quantum lattice models with tensor
networks
- URL: http://arxiv.org/abs/2012.12233v1
- Date: Tue, 22 Dec 2020 18:24:20 GMT
- Title: Dynamics of two-dimensional open quantum lattice models with tensor
networks
- Authors: Conor Mc Keever and Marzena H. Szyma\'nska
- Abstract summary: We develop a tensor network method, based on an infinite Projected Entangled Pair Operator (iPEPO) ansatz, applicable directly in the thermodynamic limit.
We consider dissipative transverse quantum Ising and driven-dissipative hard core boson models in non-mean field limits.
Our method enables to study regimes which are accessible to current experiments but lie well beyond the applicability of existing techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being able to describe accurately the dynamics and steady-states of driven
and/or dissipative but quantum correlated lattice models is of fundamental
importance in many areas of science: from quantum information to biology. An
efficient numerical simulation of large open systems in two spatial dimensions
is a challenge. In this work, we develop a tensor network method, based on an
infinite Projected Entangled Pair Operator (iPEPO) ansatz, applicable directly
in the thermodynamic limit. We incorporate techniques of finding optimal
truncations of enlarged network bonds by optimising an objective function
appropriate for open systems. Comparisons with numerically exact calculations,
both for the dynamics and the steady-state, demonstrate the power of the
method. In particular, we consider dissipative transverse quantum Ising and
driven-dissipative hard core boson models in non-mean field limits, proving
able to capture substantial entanglement in the presence of dissipation. Our
method enables to study regimes which are accessible to current experiments but
lie well beyond the applicability of existing techniques.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Real-time Dynamics of the Schwinger Model as an Open Quantum System with Neural Density Operators [1.0713888959520208]
This work develops machine learning algorithms to overcome the difficulty of approximating exact quantum states with neural network parametrisations.
As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1+1d lattice Schwinger Model as an open quantum system.
arXiv Detail & Related papers (2024-02-09T18:36:17Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - Variational classical networks for dynamics in interacting quantum
matter [0.0]
We introduce a variational class of wavefunctions based on complex networks of classical spins akin to artificial neural networks.
We show that our method can be applied to any quantum many-body system with a well-defined classical limit.
arXiv Detail & Related papers (2020-07-31T14:03:37Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Efficient variational contraction of two-dimensional tensor networks
with a non-trivial unit cell [0.0]
tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems.
We generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices.
A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell.
arXiv Detail & Related papers (2020-03-02T19:01:06Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.