Pattern Recognition Scheme for Large-Scale Cloud Detection over
Landmarks
- URL: http://arxiv.org/abs/2012.12306v1
- Date: Tue, 8 Dec 2020 09:53:08 GMT
- Title: Pattern Recognition Scheme for Large-Scale Cloud Detection over
Landmarks
- Authors: Adri\'an P\'erez-Suay, Julia Amor\'os-L\'opez, Luis G\'omez-Chova,
Jordi Mu\~noz-Mar\'i, Dieter Just, Gustau Camps-Valls
- Abstract summary: This paper introduces a complete pattern recognition methodology able to detect the presence of clouds over landmarks using Meteosat Second Generation (MSG) data.
Results are analyzed in terms of cloud detection accuracy and computational cost.
- Score: 6.297735260720704
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Landmark recognition and matching is a critical step in many Image Navigation
and Registration (INR) models for geostationary satellite services, as well as
to maintain the geometric quality assessment (GQA) in the instrument data
processing chain of Earth observation satellites. Matching the landmark
accurately is of paramount relevance, and the process can be strongly impacted
by the cloud contamination of a given landmark. This paper introduces a
complete pattern recognition methodology able to detect the presence of clouds
over landmarks using Meteosat Second Generation (MSG) data. The methodology is
based on the ensemble combination of dedicated support vector machines (SVMs)
dependent on the particular landmark and illumination conditions. This
divide-and-conquer strategy is motivated by the data complexity and follows a
physically-based strategy that considers variability both in seasonality and
illumination conditions along the day to split observations. In addition, it
allows training the classification scheme with millions of samples at an
affordable computational costs. The image archive was composed of 200 landmark
test sites with near 7 million multispectral images that correspond to MSG
acquisitions during 2010. Results are analyzed in terms of cloud detection
accuracy and computational cost. We provide illustrative source code and a
portion of the huge training data to the community.
Related papers
- SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - BenchCloudVision: A Benchmark Analysis of Deep Learning Approaches for
Cloud Detection and Segmentation in Remote Sensing Imagery [0.0]
This paper examines seven cutting-edge semantic segmentation and detection algorithms applied to clouds identification.
To increase the model's adaptability, critical elements including the type of imagery and the amount of spectral bands used during training are analyzed.
Research tries to produce machine learning algorithms that can perform cloud segmentation using only a few spectral bands.
arXiv Detail & Related papers (2024-02-21T16:32:43Z) - Distribution-aware Interactive Attention Network and Large-scale Cloud
Recognition Benchmark on FY-4A Satellite Image [24.09239785062109]
We develop a novel dataset for accurate cloud recognition.
We use domain adaptation methods to align 70,419 image-label pairs in terms of projection, temporal resolution, and spatial resolution.
We also introduce a Distribution-aware Interactive-Attention Network (DIAnet), which preserves pixel-level details through a high-resolution branch and a parallel cross-branch.
arXiv Detail & Related papers (2024-01-06T09:58:09Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
Deep learning algorithms have emerged as promising approach to solve image segmentation problems.
In this paper, we introduce a deep-learning model for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network.
We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s.
arXiv Detail & Related papers (2023-11-29T09:31:31Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Implicit neural representation for change detection [15.741202788959075]
Most commonly used approaches to detecting changes in point clouds are based on supervised methods.
We propose an unsupervised approach that comprises two components: Implicit Neural Representation (INR) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes.
We apply our method to a benchmark dataset comprising simulated LiDAR point clouds for urban sprawling.
arXiv Detail & Related papers (2023-07-28T09:26:00Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems.
GREW is the first large-scale dataset for gait recognition in the wild.
SPOSGait is the first NAS-based gait recognition model.
arXiv Detail & Related papers (2022-05-05T14:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.