Randomized RX for target detection
- URL: http://arxiv.org/abs/2012.12308v1
- Date: Tue, 8 Dec 2020 19:18:49 GMT
- Title: Randomized RX for target detection
- Authors: Fatih Nar, Adri\'an P\'erez-Suay, Jos\'e Antonio Padr\'on, Gustau
Camps-Valls
- Abstract summary: This work tackles the target detection problem through the well-known global RX method.
We propose random Fourier features to approximate the Gaussian kernel in kernel RX.
Results over both synthetic and real-world image target detection problems show space and time efficiency of the proposed method.
- Score: 8.480205772461927
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work tackles the target detection problem through the well-known global
RX method. The RX method models the clutter as a multivariate Gaussian
distribution, and has been extended to nonlinear distributions using kernel
methods. While the kernel RX can cope with complex clutters, it requires a
considerable amount of computational resources as the number of clutter pixels
gets larger. Here we propose random Fourier features to approximate the
Gaussian kernel in kernel RX and consequently our development keep the accuracy
of the nonlinearity while reducing the computational cost which is now
controlled by an hyperparameter. Results over both synthetic and real-world
image target detection problems show space and time efficiency of the proposed
method while providing high detection performance.
Related papers
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling [49.215957313126324]
Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling.
However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details.
We propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results.
arXiv Detail & Related papers (2024-05-05T14:05:33Z) - Gaussian Process Regression under Computational and Epistemic Misspecification [4.5656369638728656]
In large data applications, computational costs can be reduced using low-rank or sparse approximations of the kernel.
This paper investigates the effect of such kernel approximations on the element error.
arXiv Detail & Related papers (2023-12-14T18:53:32Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
We focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations.
We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly.
arXiv Detail & Related papers (2022-04-12T09:52:36Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Efficient Nonlinear RX Anomaly Detectors [7.762712532657168]
We propose two families of techniques to improve the efficiency of the standard kernel Reed-Xiaoli (RX) method for anomaly detection.
We show that the proposed efficient methods have a lower computational cost and they perform similar (or outperform) the standard kernel RX algorithm.
arXiv Detail & Related papers (2020-12-07T21:57:54Z) - Scaling up Kernel Ridge Regression via Locality Sensitive Hashing [6.704115928005158]
We introduce a weighted version of random binning features and show that the corresponding kernel function generates smooth Gaussian processes.
We show that our weighted random binning features provide a spectral approximation to the corresponding kernel matrix, leading to efficient algorithms for kernel ridge regression.
arXiv Detail & Related papers (2020-03-21T21:41:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.