Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
- URL: http://arxiv.org/abs/2003.09756v1
- Date: Sat, 21 Mar 2020 21:41:16 GMT
- Title: Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
- Authors: Michael Kapralov, Navid Nouri, Ilya Razenshteyn, Ameya Velingker, Amir
Zandieh
- Abstract summary: We introduce a weighted version of random binning features and show that the corresponding kernel function generates smooth Gaussian processes.
We show that our weighted random binning features provide a spectral approximation to the corresponding kernel matrix, leading to efficient algorithms for kernel ridge regression.
- Score: 6.704115928005158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random binning features, introduced in the seminal paper of Rahimi and Recht
(2007), are an efficient method for approximating a kernel matrix using
locality sensitive hashing. Random binning features provide a very simple and
efficient way of approximating the Laplace kernel but unfortunately do not
apply to many important classes of kernels, notably ones that generate smooth
Gaussian processes, such as the Gaussian kernel and Matern kernel. In this
paper, we introduce a simple weighted version of random binning features and
show that the corresponding kernel function generates Gaussian processes of any
desired smoothness. We show that our weighted random binning features provide a
spectral approximation to the corresponding kernel matrix, leading to efficient
algorithms for kernel ridge regression. Experiments on large scale regression
datasets show that our method outperforms the accuracy of random Fourier
features method.
Related papers
- New random projections for isotropic kernels using stable spectral distributions [0.0]
We decompose spectral kernel distributions as a scale mixture of $alpha$-stable random vectors.
Results have broad applications for support vector machines, kernel ridge regression, and other kernel-based machine learning techniques.
arXiv Detail & Related papers (2024-11-05T03:28:01Z) - Optimal Kernel Choice for Score Function-based Causal Discovery [92.65034439889872]
We propose a kernel selection method within the generalized score function that automatically selects the optimal kernel that best fits the data.
We conduct experiments on both synthetic data and real-world benchmarks, and the results demonstrate that our proposed method outperforms kernel selection methods.
arXiv Detail & Related papers (2024-07-14T09:32:20Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Structural Kernel Search via Bayesian Optimization and Symbolical
Optimal Transport [5.1672267755831705]
For Gaussian processes, selecting the kernel is a crucial task, often done manually by the expert.
We propose a novel, efficient search method through a general, structured kernel space.
arXiv Detail & Related papers (2022-10-21T09:30:21Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Kernel Continual Learning [117.79080100313722]
kernel continual learning is a simple but effective variant of continual learning to tackle catastrophic forgetting.
episodic memory unit stores a subset of samples for each task to learn task-specific classifiers based on kernel ridge regression.
variational random features to learn a data-driven kernel for each task.
arXiv Detail & Related papers (2021-07-12T22:09:30Z) - Taming Nonconvexity in Kernel Feature Selection---Favorable Properties
of the Laplace Kernel [77.73399781313893]
A challenge is to establish the objective function of kernel-based feature selection.
The gradient-based algorithms available for non-global optimization are only able to guarantee convergence to local minima.
arXiv Detail & Related papers (2021-06-17T11:05:48Z) - Kernel Identification Through Transformers [54.3795894579111]
Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models.
This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models.
We introduce a novel approach named KITT: Kernel Identification Through Transformers.
arXiv Detail & Related papers (2021-06-15T14:32:38Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels [26.57122949130266]
Our algorithm achieves lower variance and approximation error compared with the existing kernel approximation methods.
With better approximation to the originally selected kernels, improved classification accuracy and regression ability is obtained.
arXiv Detail & Related papers (2021-04-13T13:56:50Z) - Gauss-Legendre Features for Gaussian Process Regression [7.37712470421917]
We present a Gauss-Legendre quadrature based approach for scaling up Gaussian process regression via a low rank approximation of the kernel matrix.
Our method is very much inspired by the well-known random Fourier features approach, which also builds low-rank approximations via numerical integration.
arXiv Detail & Related papers (2021-01-04T18:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.