論文の概要: Learned Indexes for a Google-scale Disk-based Database
- arxiv url: http://arxiv.org/abs/2012.12501v1
- Date: Wed, 23 Dec 2020 05:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 04:52:20.030526
- Title: Learned Indexes for a Google-scale Disk-based Database
- Title(参考訳): Googleスケールディスクデータベースのための学習指標
- Authors: Hussam Abu-Libdeh, Deniz Alt{\i}nb\"uken, Alex Beutel, Ed H. Chi,
Lyric Doshi, Tim Kraska, Xiaozhou (Steve) Li, Andy Ly, Christopher Olston
- Abstract要約: 学習したインデックスが分散ディスクベースのデータベースシステムにどのように統合できるかを示す: GoogleのBigtable。
その結果,学習インデックスの統合により,bigtableの読み取りレイテンシとスループットが大幅に向上することがわかった。
- 参考スコア(独自算出の注目度): 23.93643265060042
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: There is great excitement about learned index structures, but understandable
skepticism about the practicality of a new method uprooting decades of research
on B-Trees. In this paper, we work to remove some of that uncertainty by
demonstrating how a learned index can be integrated in a distributed,
disk-based database system: Google's Bigtable. We detail several design
decisions we made to integrate learned indexes in Bigtable. Our results show
that integrating learned index significantly improves the end-to-end read
latency and throughput for Bigtable.
- Abstract(参考訳): 学習されたインデックス構造には大きな興奮があるが、B-Treesに関する数十年の研究を先導する新しい手法の実用性について理解可能な懐疑論がある。
本稿では,分散ディスクベースのデータベースシステムであるgoogleのbigtableに学習インデックスをどのように統合できるかを示すことにより,その不確実性を取り除くことに取り組んでいる。
学習したインデックスをBigtableに統合するために行ったいくつかの設計決定について詳述する。
その結果,学習インデックスの統合により,bigtableの読み取りレイテンシとスループットが大幅に向上することがわかった。
関連論文リスト
- Annotative Indexing [8.684302613224338]
アノテーションインデックスは、従来の逆インデックス、列ストア、オブジェクトストア、グラフデータベースを統一し、一般化する新しいフレームワークである。
アノテーションインデックスは、知識グラフ、エンティティ、半構造化データ、ランク付けをサポートするデータベースの基盤となるインデックスフレームワークを提供することができる。
論文 参考訳(メタデータ) (2024-11-09T19:07:58Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) は、新しい半パラメトリック検索フレームワークである。
既存のニューラル検索手法に似た、高い有効性のための埋め込みベースのインデックスと、従来の用語ベースの検索に似た、迅速かつ費用対効果の高いセットアップを可能にするバイナリトークンインデックスの2つのタイプをサポートする。
埋め込みベースインデックスを使用する場合の高密度検索器DPRよりも3%高いトップ1検索精度と、バイナリトークンインデックスを使用する場合のBM25よりも9%高いトップ1検索精度を実現する。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - How to Index Item IDs for Recommendation Foundation Models [49.425959632372425]
Recommendation foundation modelは、リコメンデーションタスクを自然言語タスクに変換することで、リコメンデーションのために大きな言語モデル(LLM)を利用する。
過剰に長いテキストや幻覚的なレコメンデーションを生成するのを避けるために、LCM互換のアイテムIDを作成することが不可欠である。
本稿では,シーケンシャルインデックス,協調インデックス,セマンティックインデックス(コンテンツベース)インデックス,ハイブリッドインデックスの4つを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:02:37Z) - End-to-End Learning to Index and Search in Large Output Spaces [95.16066833532396]
Extreme Multi-label Classification (XMC) は現実世界の問題を解決するための一般的なフレームワークである。
本稿では,木系インデックスを特殊重み付きグラフベースインデックスに緩和する新しい手法を提案する。
ELIASは、数百万のラベルを持つ大規模極端分類ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-10-16T01:34:17Z) - LSI: A Learned Secondary Index Structure [24.324528705706104]
本研究では,未分類データのインデックス化に学習指標を使用する最初の試みであるLearnered secondary Index(LSI)を紹介する。
LSIは最先端のセカンダリインデックスに匹敵するルックアップ性能を実現し,空間効率を最大6倍に向上することを示す。
論文 参考訳(メタデータ) (2022-05-11T20:49:44Z) - A Learned Index for Exact Similarity Search in Metric Spaces [25.330353637669386]
LIMSは、学習したインデックスを構築するために、データクラスタリングとピボットベースのデータ変換技術を使用することが提案されている。
機械学習モデルはディスク上の各データレコードの位置を近似するために開発された。
実世界のデータセットと合成データセットに関する大規模な実験は、従来の指標と比較してLIMSの優位性を示している。
論文 参考訳(メタデータ) (2022-04-21T11:24:55Z) - Micro-architectural Analysis of a Learned Index [0.0]
ALEXはツリーベースのインメモリインデックス構造であり、機械学習モデルの階層構造で構成されている。
その結果、ALEXはストールを少なくし、異なるワークロードにまたがるインストラクションあたりのサイクル値が低いことがわかった。
一方、ALEXのアウト・オブ・バウンド・インサートを扱うのに必要な命令の量は、リクエスト毎の命令を著しく増加させる(10X)。
論文 参考訳(メタデータ) (2021-09-17T12:13:06Z) - A Pluggable Learned Index Method via Sampling and Gap Insertion [48.900186573181735]
データベースインデックスは、データ検索を促進し、現実世界のシステムにおける幅広いアプリケーションに役立つ。
近年,隠れて有用なデータ分布を学習するために,learning indexという新しいインデックスが提案されている。
学習指標の学習効率と学習効率を高めるための2つの一般的なテクニックとプラグイン可能なテクニックを研究します。
論文 参考訳(メタデータ) (2021-01-04T07:17:23Z) - The Case for Learned Spatial Indexes [62.88514422115702]
我々は、空間範囲の問合せに答えるために、最先端の学習した多次元インデックス構造(すなわちFlood)から提案した手法を用いる。
i) パーティション内の機械学習検索は、1次元でフィルタリングを使用する場合の2進探索よりも11.79%速く、39.51%高速であることを示す。
また、2次元でフィルタする最も近い競合相手の1.23倍から1.83倍の速さで機械学習インデックスを精査する。
論文 参考訳(メタデータ) (2020-08-24T12:09:55Z) - RadixSpline: A Single-Pass Learned Index [84.84747738666263]
RadixSpline(RS)は、データに1回のパスで構築できる学習インデックスです。
RSは2つのパラメータしか持たないにもかかわらず、すべてのデータセットで競合的な結果を達成する。
論文 参考訳(メタデータ) (2020-04-30T01:56:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。