論文の概要: Vid2Actor: Free-viewpoint Animatable Person Synthesis from Video in the
Wild
- arxiv url: http://arxiv.org/abs/2012.12884v1
- Date: Wed, 23 Dec 2020 18:50:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 18:00:52.389319
- Title: Vid2Actor: Free-viewpoint Animatable Person Synthesis from Video in the
Wild
- Title(参考訳): Vid2Actor:野生のビデオからの自由視点アニメーション人合成
- Authors: Chung-Yi Weng, Brian Curless, Ira Kemelmacher-Shlizerman
- Abstract要約: 対象者の「夢中」映像が与えられた場合、映像中の人物のアニマタブルなモデルを再構築する。
出力モデルは、明示的な3dメッシュ再構成なしに、学習されたコントロールを介して、任意のカメラビューに任意のボディポーズでレンダリングすることができる。
- 参考スコア(独自算出の注目度): 22.881898195409885
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Given an "in-the-wild" video of a person, we reconstruct an animatable model
of the person in the video. The output model can be rendered in any body pose
to any camera view, via the learned controls, without explicit 3D mesh
reconstruction. At the core of our method is a volumetric 3D human
representation reconstructed with a deep network trained on input video,
enabling novel pose/view synthesis. Our method is an advance over GAN-based
image-to-image translation since it allows image synthesis for any pose and
camera via the internal 3D representation, while at the same time it does not
require a pre-rigged model or ground truth meshes for training, as in
mesh-based learning. Experiments validate the design choices and yield results
on synthetic data and on real videos of diverse people performing unconstrained
activities (e.g. dancing or playing tennis). Finally, we demonstrate motion
re-targeting and bullet-time rendering with the learned models.
- Abstract(参考訳): 対象者の「夢中」映像が与えられた場合、映像中の人物のアニマタブルなモデルを再構築する。
出力モデルは、明示的な3dメッシュ再構成なしに、学習されたコントロールを介して、任意のカメラビューに任意のボディポーズでレンダリングすることができる。
提案手法の核心は,入力ビデオで訓練された深層ネットワークを用いて再構成された体積3次元人間表現であり,新しいポーズ/ビュー合成を可能にする。
本手法は,内部3d表現によるポーズやカメラの合成を可能にするが,メッシュベース学習のように事前学習されたモデルや基礎的真理メッシュを必要としないため,ganによる画像から画像への画像変換の進歩である。
実験は、設計上の選択を検証し、合成データや、制約のない活動を行う多様な人々の実ビデオ(例)で結果を得る。
テニスをしたり踊ったり)。
最後に,学習モデルを用いた動き再ターゲティングと弾丸時間レンダリングを実演する。
関連論文リスト
- Synthesizing Moving People with 3D Control [88.68284137105654]
対象とする3次元運動系列の単一画像から人物をアニメーションする拡散モデルに基づくフレームワークを提案する。
まず,1つの画像が与えられた人の見えない部分を幻覚させる拡散モデルについて学習する。
第2に,3次元人間のポーズによって制御される拡散に基づくレンダリングパイプラインを開発する。
論文 参考訳(メタデータ) (2024-01-19T18:59:11Z) - Ponymation: Learning Articulated 3D Animal Motions from Unlabeled Online Videos [47.97168047776216]
そこで,本研究では,生の未表示オンラインビデオから3次元動物運動の合成モデルを学習するための新しい手法を提案する。
我々のモデルは、自己教師付き画像の特徴から抽出した意味的対応を利用して、ラベルなしのウェブビデオクリップの集合から純粋に学習する。
論文 参考訳(メタデータ) (2023-12-21T06:44:18Z) - Learning 3D Photography Videos via Self-supervised Diffusion on Single
Images [105.81348348510551]
3D写真は、静止画を3D視覚効果のあるビデオにレンダリングする。
既存のアプローチは通常、まず単眼深度推定を行い、次に様々な視点で入力フレームを後続のフレームに描画する。
我々は、入力オブジェクトの空間と時間を拡張する、新しいタスク、out-animationを提案する。
論文 参考訳(メタデータ) (2023-02-21T16:18:40Z) - Self-Supervised 3D Human Pose Estimation in Static Video Via Neural
Rendering [5.568218439349004]
2D画像から3Dの人間のポーズを推定することは、コンピュータビジョンの分野における困難かつ長年の問題である。
本研究では,1人の人物を含む2次元映像から3次元ポーズを推定する手法の予備的な結果を示す。
論文 参考訳(メタデータ) (2022-10-10T09:24:07Z) - Neural Novel Actor: Learning a Generalized Animatable Neural
Representation for Human Actors [98.24047528960406]
本稿では,複数の人物の多視点画像のスパース集合から,汎用的アニマタブルなニューラル表現を学習するための新しい手法を提案する。
学習された表現は、カメラのスパースセットから任意の人の新しいビューイメージを合成し、さらにユーザのポーズ制御でアニメーション化することができる。
論文 参考訳(メタデータ) (2022-08-25T07:36:46Z) - Creating and Reenacting Controllable 3D Humans with Differentiable
Rendering [3.079885946230076]
本稿では,人間アクターの外観を伝達し再現する,エンドツーエンドのニューラルレンダリングアーキテクチャを提案する。
提案手法は、人体多様体構造をモデル化するために、慎重に設計されたグラフ畳み込みネットワーク(GCN)を利用する。
合成可能レンダリングと3次元パラメトリックモデルの両方の利点を生かして,本手法は完全に制御可能である。
論文 参考訳(メタデータ) (2021-10-22T12:40:09Z) - Neural Body: Implicit Neural Representations with Structured Latent
Codes for Novel View Synthesis of Dynamic Humans [56.63912568777483]
本稿では,人間の演奏者に対する新しい視点合成の課題について,カメラビューの少なさから考察する。
異なるフレームで学習されたニューラルネットワーク表現が、変形可能なメッシュにアンカーされた同じ遅延コードセットを共有することを前提とした新しい人体表現であるNeural Bodyを提案する。
ZJU-MoCapの実験により、我々の手法は、新規なビュー合成品質において、先行研究よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-12-31T18:55:38Z) - Speech2Video Synthesis with 3D Skeleton Regularization and Expressive
Body Poses [36.00309828380724]
本稿では,与えられた音声を特定の人物の写実的な発話ビデオに変換する新しい手法を提案する。
我々は、リカレントニューラルネットワーク(RNN)を用いて、まず音声シーケンスから3Dスケルトンの動きを生成する。
骨格運動を現実的で表現力のあるものにするために,人工的な3次元人骨の知識と個人音声の象徴的ジェスチャーの学習辞書を生成プロセスに組み込む。
論文 参考訳(メタデータ) (2020-07-17T19:30:14Z) - Chained Representation Cycling: Learning to Estimate 3D Human Pose and
Shape by Cycling Between Representations [73.11883464562895]
本稿では,教師なし,あるいは教師なしの学習を容易にする新しいアーキテクチャを提案する。
本研究では,非ペア画像と無注釈画像から3次元人物のポーズと形状を学習することにより,その手法を実証する。
人間をモデル化するための結果を示す一方で、私たちの定式化は一般的であり、他の視覚問題にも適用できる。
論文 参考訳(メタデータ) (2020-01-06T14:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。