Shadow Removal Refinement via Material-Consistent Shadow Edges
- URL: http://arxiv.org/abs/2409.06848v1
- Date: Tue, 10 Sep 2024 20:16:28 GMT
- Title: Shadow Removal Refinement via Material-Consistent Shadow Edges
- Authors: Shilin Hu, Hieu Le, ShahRukh Athar, Sagnik Das, Dimitris Samaras,
- Abstract summary: On both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly.
We fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges.
We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images.
- Score: 33.8383848078524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shadow boundaries can be confused with material boundaries as both exhibit sharp changes in luminance or contrast within a scene. However, shadows do not modify the intrinsic color or texture of surfaces. Therefore, on both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly. These shadow/shadow-free pairs are very useful but hard-to-collect supervision signals. The crucial contribution of this paper is to learn how to identify those shadow edges that traverse material-consistent regions and how to use them as self-supervision for shadow removal refinement during test time. To achieve this, we fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges by comparing the SAM segmentation with the shadow mask. Utilizing these shadow edges, we introduce color and texture-consistency losses to enhance the shadow removal process. We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images, outperforming the state-of-the-art shadow removal methods. Additionally, we propose a new metric and an annotated dataset for evaluating the performance of shadow removal methods without the need for paired shadow/shadow-free data.
Related papers
- SoftShadow: Leveraging Penumbra-Aware Soft Masks for Shadow Removal [35.16957947180504]
We introduce novel soft shadow masks specifically designed for shadow removal.
To achieve such soft masks, we propose a textitSoftShadow framework by leveraging the prior knowledge of pretrained SAM.
This framework enables accurate predictions of penumbra (partially shaded regions) and umbra (fully shaded regions) areas while simultaneously facilitating end-to-end shadow removal.
arXiv Detail & Related papers (2024-09-11T06:12:26Z) - Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
The patterns of shadows are arbitrary, varied, and often have highly complex trace structures.
The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas.
Recent developments in this field are primarily driven by deep learning-based solutions.
arXiv Detail & Related papers (2024-07-11T20:58:38Z) - Learning Restoration is Not Enough: Transfering Identical Mapping for
Single-Image Shadow Removal [19.391619888009064]
State-of-the-art shadow removal methods train deep neural networks on collected shadow & shadow-free image pairs.
We find that two tasks exhibit poor compatibility, and using shared weights for these two tasks could lead to the model being optimized towards only one task.
We propose to handle these two tasks separately and leverage the identical mapping results to guide the shadow restoration in an iterative manner.
arXiv Detail & Related papers (2023-05-18T01:36:23Z) - Shadow Removal by High-Quality Shadow Synthesis [78.56549207362863]
HQSS employs a shadow feature encoder and a generator to synthesize pseudo images.
HQSS is observed to outperform the state-of-the-art methods on ISTD dataset, Video Shadow Removal dataset, and SRD dataset.
arXiv Detail & Related papers (2022-12-08T06:52:52Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
We propose a Transformer-based model for document shadow removal.
It uses shadow context encoding and decoding in both shadow and shadow-free regions.
arXiv Detail & Related papers (2022-11-30T01:46:29Z) - DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity [54.831083157152136]
We present a method that removes hard, soft and self shadows based on adaptive attention and ViT similarity.
Our method outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets.
arXiv Detail & Related papers (2022-11-15T12:15:29Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
We introduce a novel Shadow-Aware Dynamic Convolution (SADC) module to decouple the interdependence between the shadow region and the non-shadow region.
Inspired by the fact that the color mapping of the non-shadow region is easier to learn, our SADC processes the non-shadow region with a lightweight convolution module.
We develop a novel intra-convolution distillation loss to strengthen the information flow from the non-shadow region to the shadow region.
arXiv Detail & Related papers (2022-05-10T14:00:48Z) - Learning from Synthetic Shadows for Shadow Detection and Removal [43.53464469097872]
Recent shadow removal approaches all train convolutional neural networks (CNN) on real paired shadow/shadow-free or shadow/shadow-free/mask image datasets.
We present SynShadow, a novel large-scale synthetic shadow/shadow-free/matte image triplets dataset and a pipeline to synthesize it.
arXiv Detail & Related papers (2021-01-05T18:56:34Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
We propose a novel deep learning method for shadow removal.
Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image.
We train and test our framework on the most challenging shadow removal dataset.
arXiv Detail & Related papers (2020-12-23T23:06:38Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets.
We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves.
arXiv Detail & Related papers (2020-08-01T14:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.